A pilot-scale biocover was installed at a sanitary landfill for municipal waste, and the removal of volatile organic compounds (VOCs) by the biocover was evaluated for a long period of 550 days. The biocover (2.5 m W × 5 m L × 1 m H) was constructed with the mixture of soil, perlite, earthworm cast and compost (6:2:1:1, v/v). The total VOCs concentration of the inlet gas into the biocover was 820.3 ppb~7,217.9 ppb, and the total VOCs concentration of the outlet gas from the surface of the biocover was 12.6 ppb~1,270.1 ppb. The average removal efficiency of total VOCs was 87.6 ± 11.0% (60.5% for minimum and 98.5% for maximum). Toluene concentration was the highest among the inlet VOCs, followed by ethylbenzene, m, p-xylene and o-xylene. These aromatic VOCs accounted for more than 50% of the total VOCs concentration. Other than these aromatic VOCs, hexane, cyclohexane, heptane, benzene, and acetone were major VOCs among the inlet VOCs. Compared with the VOC profiles in the inlet gas, the relative contribution of dichloromethane to the outlet VOCs emitted from the biocover layer increased from 0.1% to 15.3%. The average removal efficiencies of BTEX in the biocover were over 84% during the operation period of 550 days. The average removal efficiencies of hexane, cyclohexane and heptane in the biocover were 86.0 ± 18.9%, 85.4 ± 20.4% and 97.1 ± 4.0%, respectively. The removal efficiency of VOCs in the biocover decreased not only when the ambient temperature had fallen below 5oC, but also when the ambient temperature had risen above 23oC. Information on the VOCs removal characteristics of the biocover installed in the landfill field can be useful for commercializing the biocover technology for the treatment of VOCs.
In order to reduce odor and methane emission from the landfill, open biocovers and a closed biofilter were applied to the landfill site. Three biocovers and the biofilter are suitable for relatively small-sized landfills with facilities that cannot resource methane into recovery due to small volumes of methane emission. Biocover-1 consists only of the soil of the landfill site while biocover-2 is mixed with the earthworm casts and artificial soil (perlite). The biofilter formed a bio-layer by adding mixed food waste compost as packing material of biocover-2. The removal efficiency decreased over time on biocover-1. However, biocover-2 and the biofilter showed stable odor removal efficiency. The rates of methane removal efficiency were in order of biofilter (94.9%)>, biocover-1(42.3%)>, and biocover-2 (37.0%). The methane removal efficiency over time in biocover-1 was gradually decreased. However, drastic efficiency decline was observed in biocover-2 due to the hardening process. As a result of overturning the surface soil where the hardening process was observed, methane removal efficiency increased again. The biofilter showed stable methane removal efficiency without degradation. The estimate methane oxidation rate in biocover- 1 was an average of 10.4%. Biocover-2 showed an efficiency of 46.3% after 25 days of forming biocover. However, due to hardening process efficiency dropped to 4.6%. After overturn of the surface soil, the rate subsequently increased to 17.9%, with an evaluated average of 12.5%.
우리나라 폐기물관리법(구폐기물관리법)에서는1997년 재활용 규정을 제정한 이후, 사업장일반폐기물 중 석탄재, 점토점결주물사, 광재 및 무기성오니 등은 성토재 등으로 재활용할 수 있도록 해왔다. 그러나 해당 폐기물에는 아연, 납, 불소 등의 성분이 현행 토양오염 우려기준을 초과하는 경우가 있어, 과거 적법한 절차를 거쳐 폐기물을 재활용하였더라도 토양환경보전법에 따라 부지정화를 시행하는 사례가 종종 보고된다. 과거 폐기물을 성토재 등으로 재활용한 지역의 부지정화를 시행하는 경우, 토양과 폐기물은 최대한 분리/선별한 후에 각각 토양환경보전법과 폐기물관리법에 따라 처리하는 것이 원칙이다. 또한, 토양정화 비용과 폐기물처리 비용이 차이를 고려할 때, 경제적인 측면에서도 토양과 폐기물을 분리하는 것이 매우 중요하다. 하지만, 앞서 언급한 석탄재 등의 폐기물은 육안상 토양과 구별이 어렵고, 물리적 성상(입도 및 밀도) 또한 토양과 유사하기 때문에 일반적인 방법으로는 선별이 불가능한 문제가 있다. 본 논문에서는 TPH, 아연, 비소 등이 1지역 토양오염우려기준을 초과하는 폐기물 재활용지역을 대상으로 XRF분석을 실시하였고, 조사결과를 토대로 오염토양과 폐기물에 대한 분류기준 수립하고 ‘토양환경보전법’과 ‘폐기물관리법’의 적용여부를 판단하는 자료로 활용하고자 하였다. XRF를 이용하여 측정한 주요 성분을 ternary diagram (SiO2, CaO/MgO, Al2O3/Fe2O3/기타)을 이용하여 비교하였으며, 오염토사와 폐기물은 성분비에 따라 구별이 가능함을 확인하였다. 토양오염도 조사결과 폐기물시료의 TPH, 아연, 비소의 농도는 토양에 비해 3~4배 정도 높게 측정되어, 폐기물을 분리/선별하는 것만으로도 토양오염도를 상당 부분 낮출 수 있을 것으로 기대된다.
우리나라의 메탄가스 배출량은 2014년 기준 26.6백만톤 CO2eq 수준으로, 이중 약 27% (7.3 백만톤 CO2eq)는 폐기물매립지에서 유출되고 있다. 매립지에서의 메탄유출을 저감하는 가장 이상적인 방법은 매립가스를 포집하여 에너지화하는 “매립가스 자원화” 방식이다. 그러나, 이를 위해서는 가스포집시설, 가스정제시설 및 발전설비 등의 설비투자가 필요하며, 매립가스 발생량이 2~3 N㎥/min (메탄가스 농도 35%~50%)이상의 대규모 매립지에서만 경제성 확보가 가능하다고 알려져 있다. 이런 이유로 230개소의 매립지 중 17개 시설에서만 매립가스 자원화 시설을 운영하고 있으며, 대부분의 중소규모 매립지에서는 메탄유출에 대한 별다른 대책이 없는 실정이다. 본 연구에서는 중소규모의 매립지 5개소를 선정하여 “공기주입을 통한 호기성 매립지 전환” 및 “매립지복토층을 이용한 생물학적 메탄산화 기술”의 메탄저감 성능과 경제성을 검토하였고 “매립가스 자원화”와 비교하였다. 매립가스 자원화를 검토하기 위한 매립가스 발생량은 LandGem 모델을 이용하여 산정하였으며, 폐기물의 성상(메탄잠재발생량 및 메탄발생속도추정)및 매립량은 환경부 통계자료를 이용하였다. 공기주입에 따른 호기성전환 비율은 주입압에 따른 유효반경을 산정하여 추정하였으며, 복토층에서의 메탄산화 효율은 문헌조사를 통해 결정하였다. 기술검토 결과 공기주입과 복토층 메탄산화기술을 조합하는 경우 70~85% 수준까지 메탄유출을 저감할 수 있는 것으로 추정되었으며, 중소규모 매립지의 경우 매립가스 자원화와 비교하여 상대적으로 우수한 경제성을 나타냈다.