For reconstituting genetic resource(Korean Native Chicken: KNC) with grem-line chimeric chicken made with cryopreserved biastdermal cells, the experiments were carried out to optimize cryopreservating conditions. Stage X biastdemal cells were collected from KNC embryos and dissociated. Cells were susupended in medium containing cyopretectant and fetal bovine serum(FBS), and distributed into plastic ampules. Cell susupensions were seeded to induce ice formation at — 7℃ to — 35℃ at in the experiments, the effect of modification of dissociation way, concentration of FBS and cell density on the vaibility of frezen-thawed cells were investigated by trypan blue exclusion. Then change the way of cell dissociation from pipetting to short time vortexing, viability of frozen- thawed cell tended to be increaced from 29 % to 52 %. Increase concentraition of FBS in frozen medium from 20 % to 80 % made viability of thawed cell from 28 % to 35 %. The viability of thawed cells were 33.9% frozen at 2 embryos/ 0.5 ml, and 43.6 % frozen at 20embryos/0.5 ml. Furthermore, combination of three modifications make big improvement. The viability of frozen-thawed cell was 60 % for combinated method, and 41 % for general method. This result means the advance to practical cryoreservation of blastdermal cell of the KNC(Ogolgye breed).
For reconstituting genetic resource(Korean Native Chicken: KNC) with grem-line chimeric chicken made with cryopreserved biastdermal cells, the experiments were carried out to optimize cryopreservating conditions. Stage X biastdemal cells were collected from KNC embryos and dissociated. Cells were susupended in medium containing cyopretectant and fetal bovine serum(FBS), and distributed into plastic ampules. Cell susupensions were seeded to induce ice formation at —7 ℃ to —35 ℃ at in the experiments, the effect of modification of dissociation way, concentration of FBS and cell density on the vaibility of frezen-thawed cells were investigated by trypan blue exclusion. Then change the way of cell dissociation from pipetting to short time vortexing, viability of frozen-thawed cell tended to be increaced from 29 % to 52 %. Increase concentraition of FBS in frozen medium from 20 % to 80 % made viability of thawed cell from 28 % to 35 %. The viability of thawed cells were 33.9% frozen at 2 embryos/ 0.5ml, and 43.6 % frozen at 20 embryos/0.5 ml. Furthermore, combination of three modifications make big improvement. The viability of frozen-thawed cell was 60 % for combinated method, and 41 % for general method. This result means the advance to practical cryoreservation of blastdermal cell of the KNC(Ogolgye breed).
The purpose of this study is to establish a basic culture system enabling in vitro culture of chicken blastodermal cells and to test the feasibility of retrovirus-mediated gene transfer to the cultured cells. The blastodermal cells were isolated from freshly laid eggs of stage X and cultured with or without STO feeder layer cells. Stem cell-like morphology was maintained after multiple passages and RT-PCR analysis proved expression of several stem cell specific genes. Immunocytochemical analysis using antibodies of anti-EMA-1 and anti-SSEA-1 also showed the feature of stem cells. Infection of the cultured blastodermal cells with LNCGW retrovirus vector resulted in successful transfer of foreign genes. The results of this study may be useful in establishing stem cell-mediated transgenic chicken production.