본 연구의 목적은 정적 스쿼트 동작 시 발란스 보드와 전신 진동자극기 적용이 신체 근육의 근활성도 변화에 어떠한 영향을 미치는지 검증하는 것이었다. 본 연구의 대상자는 20대 남성 20명을 대상으로 실시하였고(연령, 21.90±0.36 세; 신장, 174.30±1.09 cm; 체중, 66.50±1.00 kg; 신체질량지수, 21.90±0.31 kg/m2), 3가지의 기본 정적 스쿼트 동작, 발란스 보드를 적용한 정적 스쿼트 동작 및 전신 진동자극기를 적용한 정적 스쿼트 동작을 수행하였으며, 표면전극을 부착한 부위는 신체 근육의 우측 복직근, 내복사근, 외복사근, 대퇴직근, 외측광근 및 내측광근으로 설정하였다. 실험을 통해 획득된 본 연구의 결과 는 다음과 같다. 복직근, 내복사근 및 외복사근의 근활성도는 발란스 보드와 전신 진동자극기를 적용한 정적 스쿼트 동작 시 통계적으로 높게 나타났고(p=.001, p=.004, p=.000), 대퇴직근, 외측광근 및 내측광근의 근활성도는 전신 진동자극기를 적용한 정적 스쿼트 동작에서 통계적으로 가장 높게 나타났다(p=.000). 본 연구의 결과는 향후 정적 스쿼트 훈련 적용 시 효과적인 신체 근육을 강화시키기 위한 프로그램의 기초 자료가 될 것으로 기대된다.
Postural stability can reduce the likelihood of critical slip and fall accidents in workplaces. The present study aimed to analyze the effect of shoes type on the ability of postural control during quiet standing. The effect of workload on the body balance was also of primary concern. Thirteen healthy male undergraduate students participated voluntarily in the experimental study. Standing on a force plate with wearing slippers, sports shoes, or safety shoes, two-axis coordinate on subjects’ center of pressures (COP) was obtained in the two levels, rest and workload. For the workload level, subjects performed treadmill exercise to reach the predetermined level of physical workload. By converting the position coordinates of COPs, the postural sway length in both anterior-posterior (AP) axis and medio-lateral (ML) axis was assessed. ANOVA results showed that, in AP direction, wearing slippers significantly increased the postural sway length compared to wearing sports shoes or safety shoes. No significant difference in the mean sway length in AP axis was observed between sports shoes and safety shoes. In ML direction, both the workload and the shoes type did not significantly affect the mean length of postural sway. However, the postural sway length increased marginally with the slippers especially during the workload condition. This study explains wearing slippers may interfere with the ability of postural control during quiet standing. Physical workload decreases the ability of postural stability further.
The purpose of this study was conducted with senior women of ages 65 in Community Center to identify effective exercise methods for preventing falling accidents by enhancing balancing skills through aerobic and foam roller exercise programs. There were 24 subjects : 11 aerobics group and 13 foam roller group. 30 minute exercise programs were conducted against both groups 12 times 6 weeks. Various tests, including Time up and go test , Forward reach test, One-leg standing with eyes open/closed and Y-Balance were conducted prior to commencing the exercise program. Wilcoxon’s Signed-ranks test was executed to analyze the changes in balance of the aerobic and foam roller exercise group prior to and after the experiment, and Mann-Whitney test was executed to compare the difference between the two groups. The Y-Balance(post. medial) show statistically significant differences in the amount of change before and after exercise between the two groups, except for Timed up and go test, Forward reach test, YBalance( ant.), and Y-Balance(post. lateral), which did not showed statistically significant difference (p<0.05). Foam roller exercises are effective methods to enhance the balancing skills in senior women to prevent falling accidents.
This study observed the effects of ankle strengthening exercise and whole body vibration on the balance ability of older adults, thereby intending to provide basic materials for intervention methods aimed at improving older adults’ balance ability. The subjects were 20 older adults who had experienced a fall. They were equally divided into two groups. Ankle strengthening training was applied to one group and ankle strengthening training and whole body vibration were applied to the other group, a timed up and go (TUG) test and Tinetti performance oriented mobility assessment (POMA) were performed, and changes in the subjects’ limits of stability were observed. The TUG and POMA results significantly differed between before and after the experiment in the angle strengthening training (AST) group and the angle strengthening training with whole body vibration (ASTWV) group. In addition, the interaction between timing and each group was statistically significant. The limits of stability significantly changed after the intervention in both groups. Differences in the posterior and right limits of stability were significant between the AST group and ASTWV group. Therefore, ankle strengthening exercise and whole body vibration improve older adults’ balance maintenance and reduce falls or the risk factors for falls in older adults.
최근에 공연 예술 분야에서 대두된 창작자의 관점을 중심으로 작품을 연구하는 ‘Practice-based
Research’ 연구 프레임을 적용하여, 본 연구자가 직접 안무 및 제작하여 2009년에 공연했던 『균
형의 조건』을 대상으로 작품 분석을 하였다. 이를 위해 당시의 프로그램 자료와 안무노트, 영상
물 등을 활용하여 당시의 상황을 회상하는 자기 보고식 내러티브 연구방법을 적용하였다. 창작
과정에서 고안한 안무자의 ‘Performing Body’ 개념을 설정하고, 이를 무용수와 안무자의 상호 작
용 과정을 통한 창작 과정 및 결과물을 분석하였다. 상호작용의 결과로 텍스트에 반응하는 몸,
물질에 반응하는 몸, 무의식적 본능에 반응하는 몸으로 귀결되었다. 또한 창작의 전 과정을 자기
-반성적으로 다시 바라보는 보는 과정적 접근을 통해 안무가와 연구자로서의 관점이 어떠한 점
을 시사할 수 있는지를 논의하였다.
The purpose of this study was to evaluate the effects of bridging stabilization exercise on balance ability and gait performance in elderly women. The subjects of this study were thirty-one elderly women over 65 years old in HongSung-Gun Senior Citizen Welfare Hall. The subjects were randomly assigned into one of three groups (trunk stabilization exercise on the mat, whole body vibration, and Swiss ball) and participated in each exercise program three times a week for 4 weeks. Each exercise began in the bridging position. The dynamic balance and gait were measured by limit of stability area using force plate, Berg Balance Scale (BBS), and Timed Up and Go Test (TUG). The results were as follows: 1) The limit of stability in three groups increased significantly in anterior-posterior and medial-lateral lean after 4-weeks intervention (p<.05). 2) There were no significant differences in the limit of stability among three groups after 4-weeks intervention (p>.05). 3) The BBS and TUG in three groups increased significantly after 4-weeks intervention (p<.05). 4) There were significant differences among three groups in BBS. Post-hoc test showed that Swiss ball exercise group was significantly higher than the mat and whole body vibration groups. 5) There were no significant differences TUG among three groups after 4-weeks intervention (p>.05). In conclusion, this study suggested that 4 weeks of the bridging stabilization exercises were effective on balance and gait in all three groups. Particularly Swiss ball exercise group showed higher improvement than two other exercise groups (mat, whole body vibration group).
Body weight support treadmill training is a new and promising therapy in gait rehabilitation of patients with hemiplegia. The purpose of this study was to identify the effects of body weight support treadmill training on gait and standing balance in patients with hemiplegia. Eighteen patients with hemiplegia participated in the study. A 10 m-timed walk test, measurements of step length and standing balance score were administered. Intervention consisted of body weight support treadmill training five times a week for 2 weeks. The data were analyzed by paired t-test. Body weight support treadmill training scoring of standing balance, step length and 10 m-timed walk test showed a definite improvement. Body weight support treadmill training offers the advantages of task-oriented training with numerous repetitions of a supervised gait pattern. The outcomes suggest that patients with hemiplegia can improve their gait ability and standing balance through body weight support treadmill training.