In NPP (nuclear power plant), boric acid is used as a neutron absorbent. So radioactive boric acid waste are generated from various waste streams such as discharge or leakage of reactor coolant water, floor drains, drainage of equipment for operation or maintenance, reactor letdown flows and etc. Depending on KHNP, 20,015 drum (200 L drum) of concentrated boric acid waste were stored in KOREA NPP until 2019. In previous study, our group suggested the waste upcycling process synthesizing B4C neutron absorber using boric acid waste and activated carbon waste to innovatively reduce radioactive wastes. Radioactive activated carbon waste was utilized in off gas treatment system of NPP to capture nuclide such as I-131, C-14 and H-3. Activated carbon waste is treated as low-level radioactive waste and pre-treatment system for removing nuclide from the activated carbon waste is needed to use B4C up-cycling process. In this study, microwave treatment system is suggested to treat the activated carbon waste. Activated carbon waste was exposed to microwave for a few minutes and temperature of the waste was dramatically increased over 400°C. Nuclide in the activated carbon waste were selectively removed from the waste without massive production of secondary off gas waste.
Radioactive liquid waste generated during the operation of domestic nuclear power plants is treated through a somewhat different liquid radwaste system (LRS) for each plant. Prior to the introduction of standard nuclear power plants, LRS used a concentrated water dry system (CWDS) to evaporate liquid waste and manage it in the form of dry powder. The boron-containing radioactive liquid waste dry powder was solidified using paraffin from 1995 to 2010, and about 3,650 drums (based on 200 L) of paraffin solidified drums are currently stored in nuclear power plants. Paraffin solidification drums do not meet the acceptance criteria for radioactive waste repositories because it is difficult to secure the homogeneity of the solidified body and there are concerns about leaching of radioactive waste due to the low melting point of paraffin. In order to solve this problem and safely permanently dispose of paraffin solidification drums, the characteristics of dry powder paraffin solidification drums containing boron-containing radioactive liquid waste must be analyzed and appropriate treatment technology utilizing the results must be introduced. This study analyzes the physical properties of paraffin, the chemical properties of boron-containing radioactive waste dry powder, and the physicochemical properties of paraffin solidification powder, and proposes an appropriate alternative technology for treating boron-containing radioactive waste dry drum. When disposing of the paraffin solidification drum with boron-containing radioactive liquid waste dry powder, the solidification body must be effectively withdrawn from the drum and the paraffin must be completely separated from the solidification body. When disposing the drum, the solidified material must be effectively extracted from the drum and the paraffin must be completely separated from the solidified material. Afterwards, the paraffin must be self-disposed, and the radioactive waste must be disposed of in accordance with acceptance criteria of repository. We looked at how each characteristic of the paraffin solidification drum with boron-containing radioactive liquid waste dry powder can be utilized in each of the above treatment processes.