검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2023.11 구독 인증기관·개인회원 무료
        In NPP (nuclear power plant), boric acid is used as a neutron absorbent. So radioactive boric acid waste are generated from various waste streams such as discharge or leakage of reactor coolant water, floor drains, drainage of equipment for operation or maintenance, reactor letdown flows and etc. Depending on KHNP, 20,015 drum (200 L drum) of concentrated boric acid waste were stored in KOREA NPP until 2019. In previous study, our group suggested the waste upcycling process synthesizing B4C neutron absorber using boric acid waste and activated carbon waste to innovatively reduce radioactive wastes. Radioactive activated carbon waste was utilized in off gas treatment system of NPP to capture nuclide such as I-131, C-14 and H-3. Activated carbon waste is treated as low-level radioactive waste and pre-treatment system for removing nuclide from the activated carbon waste is needed to use B4C up-cycling process. In this study, microwave treatment system is suggested to treat the activated carbon waste. Activated carbon waste was exposed to microwave for a few minutes and temperature of the waste was dramatically increased over 400°C. Nuclide in the activated carbon waste were selectively removed from the waste without massive production of secondary off gas waste.
        2.
        2023.05 구독 인증기관·개인회원 무료
        The intermediate level spent resins waste generated from water purification for the the moderator and primary heat transport system during operaioin of heavy water reactor (HWR). Especially, moderator resins contain high level activity largely because of their C-14 content. So spent resins are considered as a problematirc solid waste and require special treatment to meet the waste acceptance criteria for a disposal site. Various methods have been studied for the treatment of spent resins which include thermal, destructive, and stripping methods. In the case of solidification methods, cement, bitument or organic polymers were suggested. In the 1990s, acid stripping using nitric acid and thermal treatment methods were actively investigated in Canada to remove C-14 nuclide from waste resin. In Japan, thermal distructive method was studied in the 1990s. Since 2005, KAERI developed acid stripping method using phosphate salt. However, acid stripping method are not suitable due to large amounts of 2nd waste containing acid solution with various nuclides. To solve this probelm, KAERI has been suggested the microwave treatment method for C-14 selective removal from waste resin in the 2010s. Pilot scale demonstration tests using radioactive waste resin generated from Wolsung unit 1 and unit 2 were successfully conducted and 95% of C-14 was selectively removed from the radioactive waste resin. In recent years, price of C-14 source is dramatically increased due to market growth of C-14 utilization and exclusive supply chain depending on China and Russia. High purity of C-14 were captured in HWR waste resin. Interest of C-14 recovery research from HWR waste resin is currently increased in Canada. In this study, microwave method is suggested to treat HWR waste resin with C-14 recovery process. Additionally, status of waste resin management and research trends of HWR waste resin treatment are introduced.
        3.
        2023.05 구독 인증기관·개인회원 무료
        Mixed-bed ion exchange resin consist of anion exchange resin and cation exchange resin is used to treat liquid radioactive waste in nuclear power plants. C-14 from heavy water reactors (HWR) is adsorbed on the anion exchange resin and is considered intermediate-level radioactive waste. The total amount of radioactivity of C-14 in spent ion exchange resin exceeds the activity limits for the disposal facility. Therefore, it is necessary to reduce the radioactivity through pre-treatment. There are thermal and non-thermal methods for the treatment of spent ion exchange resin. However, destructive methods have the problem of emitting off-gas containing radionuclides. To solve this challenge, various methods have been developed such as acid stripping, PLO process, activity stripping, thermal treatment and others. In this study, spent ion exchange resin (spent resin) was treated using microwave. The reaction characteristics of the resin to microwave were used to selectively remove the C-14 on the functional groups. Simulated spent anion exchange resin and spent resin from Wolseong NPP were treated with the microwave method, and the desorption rate was over 95%. An integrated process system of 1 kg/batch was built to produce operating data. After the operation of the process, characterization and evaluation of post-treatment for condensate water and adsorbent used in the process were performed. When the process system was applied to treat simulated spent resin and real spent resin, both showed a desorption rated of more than 97%. It means that the C-14 was successfully removed from the radioactive spent resin.
        4.
        2022.10 구독 인증기관·개인회원 무료
        Radioactive cesium is a heat generated and semi-volitile nuclide in spent nuclear fuel (SNF). It is released gasous phase by head-end treatment which is a pretreatment of pyroprocessing. One of the capturing methods of gasous radioactive cesium is using zeolite. After ion-exchanged zeolite, it is transformed to ceramic waste form which is durable ceramic structure by heat treatment. Various ceramic wasteforms for Cs immobilization have been researched such as cesium aluminosilicate (CsAlSi2O6), cesium zirconium phosphate (CsZr2(PO4)3), cesium titanate (CsxAlxTi8-xO16, Cs2TiNb6O18) and CsZr0.5W1.5O6. The cesium pollucite is composed to aluminosilicate framework and cesium ion incorporated in matrix materials lattices. Many researchers are reported that the pollucite have high chemical durability. In this study, the Cesium pollucite was fabricated using mixtures of aluminosilicate denoted Absorbent product (AP) and Cs2CO3 by calcination and pelletized by cold pressing. The characterization of fabricated pollucite powder and pellets was analyzed by XRD, TGA, SEM, SEMEDS and XRF. The chemical durability of pollucite powder was evaulated by PCT-A and ICP-MS and OES. Thus, the optimal pressure condition without breaking the pellets which is low Cs2O/AP ratio and pelletizing pressure was selected. The long-term leaching test was performed using MCC-1 method for 28 days with the fabricated pollucite pellets. The leachate of leaching test was allard groundwaster and Deionized water and replaced 5 contact periods which is 3 hours, 3 days, 7 days, 14 days and 28 days and analyzed by ICPMS. The leaching rate was shown two stages. The first stage was rapid and relatively large amount of nuclides were leached. The leaching rate was decreased in the second stage. The fractional release rate of this study was shown same trend. These results were similar to previous studies.
        5.
        2022.05 구독 인증기관·개인회원 무료
        Inorganic and organic ion exchange materials were generally applied to liquid processes in nuclear reactor. In the case of heavy-water reactor (HWR), zeolite, active carbon, anion resin, and cation resin were used to treat liquid processes such as reactor primary coolant cleanup and liquid radioactive waste management system. Then, used ion exchangers were stored at storage tanks. Various kinds of nuclides were adsorbed in ion exchange materials. Especially, C-14, long half-life nuclide, was highly concentrated in anion resin, and waste resin was treated as intermediated level radioactive waste (ILW). Thermal and non-thermal methods such as pyrolysis, incineration, catalytic extraction, acid digestion, and wet oxidation have been studied for treating spent resin. However, destructive methods are not suitable due to massive off gas waste containing radioactive species. To solve this problem, various kinds of processes were developed such as acid stripping, PLO process, activity stripping, thermal treatment, and etc. In this study, microwave method is suggested to treat HWR waste resin. C-14 nuclide was selectively removed from waste resin without decomposition of main structure in waste resin. Radioactive waste resin generated from Wolsung HWR unit 1 and unit 2 was treated using microwave method and 95% of C-14 was successfully removed from the radioactive waste resin.
        6.
        2022.05 구독 인증기관·개인회원 무료
        In this study, an aerosol process was introduced to produce CaCO3. The possibility of producing CaCO3 by the aerosol process was evaluated. The characteristics of CaCO3 prepared by the aerosol process were also evaluated. In the CaCO3 prepared in this study, as the heat treatment proceeded, the calcite phase disappeared. The portlandite phase and the lime phase were formed by the heat treatment. Even if the CO2 component is removed from the calcite phase, there is a possibility that the converted CO2 component could be adsorbed into the Ca component to form a calcite phase again. Therefore, in order to remove the calcite phase, carbon components should be removed first. The lime phase was formed when CO2 was removed from the calcite phase, while the portlandite phase was formed by the introducing of H2O to the lime phase. Therefore, the order in which each phase formed could be in the order of calcite, lime, and portlandite. The reason for the simultaneous presence of the portlandite phase and the lime phase is that the hydroxyl group (OH−) introduced by H2O was not removed completely due to low temperature and/or insufficient heating time. When the sufficient temperature (900°C) and heating time (60 min) were applied, the hydroxyl group (OH−) was removed to transform into lime phase. Since the precursor contained the hydrogen component, it could be possible that the moisture (H2O) and/or the hydroxyl group (OH−) were introduced during the heat treatment process.
        7.
        2022.05 구독 인증기관·개인회원 무료
        Uranium-235, used for nuclear power generation, has brought radioactive waste. It could be released into the environment during reprocessing or recycling of the spent nuclear fuel. Among the radioactive waste nuclides, I-129 occurs problems due to its long half-life (1.57×107 y) with high mobility in the environment. Therefore, it should be captured and immobilized into a geological disposal system through a stable waste form. One of the methods to capture iodine in the off-gas treatment process is to use silver loaded zeolite filter. It converts radioactive iodine into AgI, one of the most stable iodine forms in the solid state. However, it is difficult to directly dispose of AgI itself in an underground repository because of its aqueous dissolution under reducing condition with Fe2+. It must be immobilized in the matrix materials to prevent release of iodine as a result of chemical reaction. Among the matrix glasses, silver tellurite glass has been proposed. In this study, additives including Al, Bi, Pb, V, Mo, and W were added into the silver tellurite glass. The thermal properties of each matrix for radioactive iodine immobilization were evaluated. The glasses were prepared by the melt-quenching method at 800°C for 1 h. Differential scanning calorimetry (DSC) was performed to evaluate the thermal properties of the glass samples. From the study, the glass transition temperature (Tg) was increased by adding additives such as V2O5, MoO3, or WO3 in the silver tellurite glass. The relative electro-static field (REF) values of V2O5, MoO3, and WO3 are about three times higher than that of the glass network former, TeO2. It could provide sufficient electro-static field (EF) to the TeO2 interacting with the non-bridging oxygen forming Te-O-M (M = V, Mo, W) links. Therefore, the addition of V2O5, MoO3, or WO3 reinforced the glass network cohesion to increase the Tg of the glass. The addition of MoO3or WO3 in the silver tellurite glass increased Tg and crystallization temperature (Tc) with remaining the glass stability.
        8.
        2022.05 구독 인증기관·개인회원 무료
        Radioactive Cesium is fission products of spent nuclear fuelwith high heat generating nuclide, having a 30 years half-life. Particularly, it is important to make stable waste form because Cs-137 have high solubility and mobility at ground water. The ceramic waste form has higher thermal and structural stability and lower solubility than glass and cement waste form. Various ceramic waste forms for Cs immobilization have been researched such as aluminosilicate (CsAlSi2O6), phosphate (CsZr2(PO4)3), titanate (CsxAlxTi8-XO16) and CsZr0.4W1.5O6. Cs pollucite is incorporated radio-Cesium to aluminosilicate framework by inorganic ion-exchange with zeolite. Therefore, it is an extremely stable structure. In previous study, we are prepared Cs pollucite pellet with various ratio of Cs precursor/matrix materials, and attempted to evaluate applicability as ceramic waste form. Cs pollucite is produced by mixing Mullite and SiO2 obtained by heat treatment Kaolinite with Cs2CO3 in ratios of 0.5, 0.6, 0.7, 0.8. Optimized ratio was 0.5 revealed single pollucite phase and the others exhibited CsAlSiO4 phase with pollucite. Cs pollucite of ratio 0.5 was pelletized under various conditions and evaluated performance as waste form. herein, the pellets were cracked on surface and edges broken. Therefore, Cs pollucite having high ratio of matrix materials contained Si and Al was prepared and pelletized, and then waste form was evaluated. The Cs pollucite powder is ratio of Cs precursor/matrix materials were 0.1, 0.2, 0.3, 0.4. Pollucite powder was mixed with 1.5, 2.0wt% Polyvinyl alcohol as binder, and dried at 70°C for overnight. Afterward, these powders obtained were pressed using punch-die apparatus at 50, 100 bar for 1 hour and the pellets with about dia. 25 mm and height 10 mm was acquired. These pellets were sintered at 1,400°C for 5 hours. Subsequently, the waste forms were evaluated physicochemical test such as compression strength, thermal conductivity, thermal expansion and leaching properties analysis.
        10.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the effects of changes to the pulsation factor of pulsed direct currents on wound healing. Patients with a pressure ulcer at a care hospital for the elderly were randomly divided into three groups: Group 1 involved the application of 100㎲ in pulse duration, 10 ㎳ in pulse period, 100 pps in a pulsation factor, 15 ㎃ in pulse amplitude, and polarity red+ by using pulsed direct currents; Group 2 involved a change of pulse period to 8 ms; and Group 3 received general wound management. Although there were no statistically significant differences in the changing stages of pressure ulcers among the groups, all the groups dropped in numerical stages. In the two groups to which pulsed direct currents were applied, there was a statistically significant reduction in the stages of pressure ulcers from the initial assessment to the 12-week assessment (p<.05). Even though there were no statistically significant differences in changes to the area of pressure ulcers among the groups, a statistically significant decrease was found in pulsed direct current group 2 whose pulse period was shortened (p<.05). There was no difference in the healing rate of pressure ulcers among the groups, but it made a numerical increase in pulsed direct current group 1 and group 2 and a numerical decrease in group 3. There were no significant differences in the characteristics of those who had a full recovery among the groups. Those findings indicate that pulsed direct currents have positive effects on the wound healing of patients with a pressure ulcer and that a treatment with pulsed direct currents whose pulsation factor is raised by reducing the pulse duration is especially effective.
        4,000원
        11.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was to examine on the respiratory variables, heart rate and muscle activity between the static recovery and dynamic recovery after progressive resistance exercise to maximal point. Subjects were 15 students enrolled in N University. All were tested two times (static recovery and dynamic recovery) and were requested to perform a walking on a treadmill after progressive resistance exercise to maximal point. Electromyography(EMG) was used to monitor the muscle activity(TA: Tibialis Anterior, MG: Medial Gastrocnemius) during gait. CPEX-1 was used to measure the respiratory variables and heart rate. The dynamic recovery group was shown the significant lower heart rate than that of static recovery group at during gait. Respiratory rate showed statistically a significant difference. Electromyography(RMS, root mean square) showed a non-significant difference. But the dynamic recovery group of muscle activity was found highly in TA and MG. This study indicated that the dynamic recovery method evidenced more faster than the static recovery method. And this type of dynamic rest by walking can be a help of recovery after exercise.
        4,000원
        12.
        2016.10 서비스 종료(열람 제한)
        Background : Some of invasive plants, which were introduced from foreign countries, have caused problems in Korea. Invasion of these invasive plants in the ecosystem threatens the habitat of endemic species, reducing biodiversity, and causing a disturbance in the ecological system. Hypochaeris radicata L. (Asteraceae), the most invasive plants in Korea, particularly in Jeju Island, invade farmland, and autochthonous forest, establishing monocultures and modifying the ecosystem structure. This invasive species has become a serious environmental problem because they displace the indigenous plant species. This study was conducted to evaluate the antioxidantive effects of ethanolic extracts from different parts (root, stem, seed and leaf) of the invasive exotic species Hypochaeris radicata L. Methods and Results : The aim of present study was to estimate the total phenolic and flavonoid contents and to investigate in vitro antioxidant potential of ethanolic leaf, root, seed, and stem extracts of the Hypochaeris radicata. Antioxidant activity was assessed by using 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay, reducing power activity, [2,2-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)] ABTS+ assay and ferrous ion chelating activity. The total phenolic and flavonoid contents were also determined and expressed in gallic acid and quercetin equivalent respectively. The results of the study indicate that the ethanolic extracts of the leaf, root, seed, and stem of H. radicata posses significant scavenging activity against DPPH (21.25% for leaf, 34.98% for root, 60.76% for seed and 45.25% for stem at 250 μg/ml each) and ABTS+ radical scavenging activity (14.85% for leaf, 17.40% for root, 35.91% for seed and 24.70% for stem at 250 μg/ml each), reducing power activity (0.178 absorbance at 300 μg/ml for leaf, 0.211 absorbance at 300 μg/ml for root, 0.447 absorbance at 300 μg/ml for seed, 0.276 absorbance at 300 μg/ml for stem). The free radical scavenging and antioxidant activities may be attributed to the presence of adequate phenolic (gallic acid content is 361.92.98 μg/g in leaf, 356.59μg/g in root, 719.72 μg/g in seed and 512.08 μg/g stem) and flavonoid compounds (219.52 μg/g in leaf, 75.67μg/g in root, 281.39 μg/g in seed and 215.66 μg/g stem). This study revealed that the ethanolic extracts of both leaf, root, seed and stem of H. radicata has demonstrated significant antioxidant activity. Conclusion : In conclusion, the present study has demonstrated that Hypochaeris radicata seed ethanol extracts are rich in phenolics and have a strong antioxidant activity and a radical-scavenging action in all of the tested methods. This suggests that Hypochaeris radicata is a good source of natural antioxidants.