Tendon-driven mechanisms have gained prominence in a range of applications, including soft robots, exoskeletons, and prosthetic devices. These mechanism use flexible tendons or cables to transmit force and control joint movement. As the popularity of these mechanisms grows, there is an increasing demand for solutions to enhance stability and safety. The use of brakes is a well-known solution, but existing models are difficult to customize for small soft robots. In this paper, we present a one-way shape memory alloy-based compact brake for tendon-driven mechanisms. The proposed soft brake featured a thin design and was tailored for seamless integration within a tendon-driven mechanism. In addition, the use of the one-way shape memory alloys enabled the design of the brakes that are both compact and powerful. This brake is expected to be widely used in miniaturized tendon-driven robots.
Air Defense System requires fast movement of the turret to detect and attack the flying target of enemy. In order for the air defense system to operate accurately and properly, it is necessary to optimize the design of the motor brake system. The air defense system that is not designed properly has possibility of low performance of the gun turret and environment of operators.
The previous air defense system had such flaw in its design and it caused much noise and current in the operation of the turret. In order to resolve this flaw, we changed the position and design of the components of the motor brake system to reduce load and achieved the 62.5% reduced current and 40% reduced noise of the motor brake system compared to the previous design.
The objective of this study is to construct the inspection standards of motorcycle brake system performance. Based on the Korean Motor Vehicle Safety Standards (KMVSS), the Korean Motor Vehicle Inspection Standards (KMVI), the inspection standards of the International Motor Vehicle Inspection Committee (CITA), United Kingdom and Japan, three alternative brake performance criteria were suggested. The brake performance tests for 129 various models of used motorcycles were conducted for verifying the developed test equipment and suggested three alternative criteria. The total brake performance criterion is appropriately suggested to set at 50 %. Considering the KMVI or the CITA, the brake performance criterion of rear axle may suggested to set at 20 % or 25 %, either.
We synthesized potassium hexatitanate, (K2Ti6O13, PT6), with a non-fibrous shape, by acid leaching and subsequent thermal treatment of potassium tetratitanate (K2Ti4O9, PT4), with layered crystal structure. By controlling nucleation and growth of PT4 crystals, we obtained splinter-type crystals of PT6 with increased width and reduced thickness. The optimal holding temperature for the layered PT4 was found to be ~920 oC. The length and width of the PT4 crystals were increased when the nucleation and growth time were increased. After a proton exchange reaction using aqueous 0.3 M HCl solution, and subsequent heat treatment at 850 oC, the PT4 crystal transformed into splinter-type PT6 crystals. The frictional characteristics of the friction materials show that as the particle size of PT6 increases, the coefficient of friction (COF) and wear amounts of both the friction materials and counter disc increase.
Mahalanobis Taguchi-System (MTS) is a pattern information technology, which has been used in different diagnostic applications to make quantitative decisions by constructing a multivariate system using data analytic methods without any assumption regard
Counter balance valve is used as one part of hydraulic motor brake system. The function of this valve is to protect over-run or free falling of inertia load. But occasionally the brake system with counter balance valve makes some undesirable problems such as pressure surges or vibrations. These problems may hurt system safety and driver's conformability. Nevertheless, studies on dynamic characteristics of hydraulic system including counter balance valve are very rare, so further accumulation of research results are required. In this study, for the purpose of easy estimation about dynamic characteristics of hydraulic system including counter balance valve, precise formulation describing fluid dynamics and valve dynamics under various boundary conditions were made. The equations obtained in the preceding process include some parameters that must be got experimentally. Flow coefficients of valve and choke are the most significant ones among the parameters. So these parameters are obtained experimentally in this study, and experimental equations obtained from the experimental data were used for numerical calculation. The equations were analysed by numerical integration using Runge-Kutta method, because the equations contain various nonlinear terms. From the numerical analysis, it was verified that the dynamic response of counter balance valve and pressure variation at each elements can be estimated very easily. So the analysing method developed in this study enabled very easy estimating the relation between the performances of counter balance valve and various physical parameters related to the valve. Conclusively, it is said that the results obtained in this study can be used very usefully to develop a new type counter balance valve or to apply the valve to actual hydraulic system for various industrial equipments.