검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nasopharyngeal stenosis is defined as a morphological transition of narrowing at the nasopharyngeal region. A 2-yearold, castrated male, Korean short hair cat was referred to the animal medical center, Gyeongsang National University. According to clinical signs, diagnostic imaging, and physical examination, nasopharyngeal stenosis was diagnosed. The staphylectomy was performed using a CO2 laser, and there were not any post-operative complications. The patient was discharged in two days. This report describes the case of nasopharyngeal stenosis in cat and represents that laser ablation could be a good option for surgical management of the nasopharyngeal region with a low complication rate.
        3,000원
        2.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Metal-additive manufacturing techniques, such as selective laser sintering (SLS), are increasingly utilized for new biomaterials, such as cobalt-chrome (Co-Cr). In this study, Co-Cr gas-atomized powders are used as charge materials for the SLS process. The aim is to understand the consolidation of Co-Cr alloy powder and characterization of samples sintered using SLS under various conditions. The results clearly suggest that besides the matrix phase, the second phase, which is attributed to pores and oxidation particles, is observed in the sintered specimens. The as-built samples exhibit completely different microstructural features compared with the casting or wrought products reported in the literature. The microstructure reveals melt pools, which represent the characteristics of the scanning direction, in particular, or of the SLS conditions, in general. It also exposes extremely fine grain sizes inside the melt pools, resulting in an enhancement in the hardness of the as-built products. Thus, the hardness values of the samples prepared by SLS under all parameter conditions used in this study are evidently higher than those of the casting products.
        4,000원
        3.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphite fibers are materials with a high specific modulus that have attracted much interest in the aerospace industry, but their high manufacturing cost and low yield are still problems that prevent their wide applications in practice. This paper presents a laser-based process for graphitization of carbon fiber (CF) and explores the effect of laser radiation on the microstructure of CF. The obtained Raman spectra indicate that the outer surface of CF evolves from turbostratic structures into a three-dimensional ordered state after being irradiated by a laser. The X-ray diffraction data revealed that the growth of crystallite was parallel to the fiber axis, and the interlayer spacing d002 decreased from 0.353 to 0.345 nm. The results of scanning electron microscopy revealed that the surface of irradiated CFs was rougher than that of the unirradiated ones and there were scale-like small fragments that had peeled off from the fibers. The tensile modulus increased by 17.51% and the Weibull average tensile strength decreased by 30.53% after being irradiated by a laser. These results demonstrate that the laser irradiation was able to increase the graphitization degree of the CFs, which showed some properties comparable to graphite fibers.
        4,000원
        4.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study we manufacture a Ni-Cr-B-Si +WC/12Co composite coating layer on a Cu base material using a laser cladding (LC) process, and investigate the microstructural and mechanical properties of the LC coating and Ni electroplating layers (reference material). The initial powder used for the LC coating layer is a powder feedstock with an average particle size of 125 μm. To identify the microstructural and mechanical properties, OM, SEM, XRD, room and high temperature hardness, and wear tests are implemented. Microstructural observation of the initial powder and LC coating layer confirm the layer is composed mainly of γ-Ni phases and WC and Cr23C6 carbides. The measured hardness of the LC coating and Ni electroplating layers are 653 and 154 Hv, respectively. The hardness measurement from room up to high temperatures of 700°C result in a hardness decrease as the temperature increases, but the hardness of the LC coating layer is higher for all temperature conditions. Room temperature wear results show that the wear loss of the LC coating layer is 1/12 of the wear level of the Ni electroplating layer. The measured bond strength is also greater in the LC coating than the Ni electroplating.
        4,000원
        5.
        2013.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silicon nanoparticle is a promising material for electronic devices, photovoltaics, and biological applications. Here, we synthesize silicon nanoparticles via CO2 laser pyrolysis and study the hydrogen flow effects on the characteristics of silicon nanoparticles using high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and UV-Vis-NIR spectrophotometry. In CO2 laser pyrolysis, used to synthesize the silicon nanoparticles, the wavelength of the CO2 laser matches the absorption cross section of silane. Silane absorbs the CO2 laser energy at a wavelength of 10.6μm. Therefore, the laser excites silane, dissociating it to Si radical. Finally, nucleation and growth of the Si radicals generates various silicon nanoparticle. In addition, researchers can introduce hydrogen gas into silane to control the characteristics of silicon nanoparticles. Changing the hydrogen flow rate affects the nanoparticle size and crystallinity of silicon nanoparticles. Specifically, a high hydrogen flow rate produces small silicon nanoparticles and induces low crystallinity. We attribute these characteristics to the low density of the Si precursor, high hydrogen passivation probability on the surface of the silicon nanoparticles, and low reaction temperature during the synthesis.
        4,000원
        8.
        1992.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        레이저빔에 의한 철강재의 Ti 표면합금화에 미치는 C함량의 영향을 관찰하였다. 철강재상에 Ti 코팅 후 레이저빔 조사시 질소를 취입가스로 사용하면 부분적으로 TiN과 Fe2Ti가 형성된다. 저탄소강의 경우 Ti함량의 증가에 따라 임계냉각 속도의 증가로 마르텐사이트화가 억제된다. 고탄소강의 경우 Ti의 함량이 1.5%정도 임에도 훼라이트 조직이 형성되지 않고 마르텐사이트 조직이 형성되어 경화된다. 그리고 고탄소강의 Ti 표면합금층 형성에 부분적인 TiC의 석출이 있어 더욱 경도를 증가시키는 것으로 생각된다.
        4,000원