본 연구는 최근 친환경 대체 시멘트로 주목받고 있는 칼슘설포알루미네이트(calcium sulfoaluminate, CSA) 시멘트의 수화 반응을 탐구한다. 배합수 및 석고의 첨가량에 따른 페이스트 배합실험을 하였으며, X-선 회절(X-ray diffraction, XRD)실험을 통해 각 변수 및 재령 일에 따른 광물 상(mineralogical phase)을 정량분석하였다. 클링커 광물의 정량분석 결과를 입력 값으로 깁스 에너지(Gibbs energy) 최소화 계산을 통한 CSA 시멘트의 수화반응 모형을 도출하였다. 배합수의 증가는 CSA 시멘트의 수화반응을 촉진 및 향상하는 것으로 조사되었으며, 석고 첨가량 증가에 따라 CSA 시멘트의 완전 수화를 위한 최소 요구 배합 수량이 증가하는 것으로 조사되었다.
Two main parameters were examined such as CSA content and polymer-binder ratio to find effects on the strength, water absorption, chloride ion penetration depth, carbonation depth, length change and chemical resistance of polymer-modified mortar with CSA and EVA polymer powder (EVAPP). As results, compressive, flexural, tensile, adhesive strengths, and length change of the polymer-modified mortar with CSA and EVAPP increases with increasing CSA content and polymer-binder ratio, although the water absorption, chloride ion penetration depth, and carbonation depth decrease with increasing polymer-binder ratio and CSA content, and also the chemical resistance decreases. Such strength and durability development is attributed to the high tensile strength of EVA polymer and the improved bond between cement hydrates and aggregates because of the addition of EVAPP and CSA.
Concrete strength is not only an important factor in design and quality control, but it also represents the overall qualityof concrete. The use of admixture has been increasingly prevalent in the recent cases of concrete production as a meansto improve the functionality of concrete. Of particular note, fly ash is added in either the cement or the ready-mixedconcrete production stage with the general mixing ratio being about 15%; however, using fly ash slows down the initialhydration of the binding material, which can in turn cause a delay in acquisition of strength. In this study, calcium sulfoaluminate (C4A3S; CSA) was added to improve the initial strength of cement after the use of fly ash, and its effect instrength improvement was analyzed. The substitution ratios of fly ash were 0, 10, 20 and 30%, and the amount of CSAadded to improve the initial strength was 8% of the fly ash weight. The results of the experiment showed that adding CSA resulted in high calorific values at peaks 1 and 2 of hydration heat, and an X-ray diffraction analysis showed thatthe amount of unhydrated materials was higher with increasing substitution ratio of fly ash. An increase in CSA wasalso shown to lead to a higher amount of ettringite being generated in the early ages. In conclusion, addition of 30% flyash and 8% CSA led to an ettringite production that was 3 times higher than the mixing ratio of fly ash, which effectivelyimproved the initial strength. The same phenomenon was observed in the electron microscope analysis. Based on theseresults, it was determined that adding CSA in an amount that equaled to 8% of fly ash weight can promote the productionof ettringite, thereby improving the initial strength, which gets reduced by the use of fly ash.