Carotenoids of squash play an important role in human health by acting as sources of provitamin A or as protective antioxidants. Among the 60 accessions of squash germplasm, fluorescent yellow and yellow types of flesh color got the highest count, followed by the orange, whitish yellow and greenish yellow. The redness and yellowness values of the flesh powder ranged from -2.45 to 86.09 and from 13.77 to 39.80, respectively. While the lightness and the total color difference values of flesh color varied from 67.64 to 86.09 and from 19.77 to 51.79, respectively. Colorimetric values of redness and yellowness showed positive correlation, and the correlation coefficient (r) was as high as 0.7386. The five accessions represented each flesh color types, IT195043 (orange), IT136696 (fluorescent yellow), IT186365 (yellow), IT137963 (whitish yellow), and IT180449 (greenish yellow). The total amount of carotenoid contents was in the order of orange color (104.64 mg/100 g), greenish yellow color (70.82 mg/100 g), fluorescent yellow color (32.41 mg/100 g), yellow color (8.73 mg/100 g), and whitish yellow color (4.73 mg/ 100 g). Both lutein and β-carotene were the predominant pigments of carotenoids, and lycopene was only separated and identified in the orange color flesh. According to the results, colorimetric analysis can aid breeders interested in increasing carotenoid content in squash, which could be accurately measured using a simple, reliable, and cost- and labor-efficient method for the evaluation of carotenoid pigments.
Suspended and sinking particles were collected during ODP Leg 119 to the Indian Ocean sector of the Antarctic Ocean. Field work was carried out at four sampling sites in Prydz Bay. Two of these sites were located in the Outer Bay, and two in the Inner Bay. At the four locations, a total of ten deployments of a sediment trap array were made. The concentrations of carotenoids both in suspended and sinking particulate matter in Prydz Bay were analyzed using HPLC. Fucoxanthin was the dominant carotenoid pigments both in suspended and sinking particles. The present study also indicates that 19'-hexanoyoxyfucoxanthin-containing prymesiophytes (Phaeocystis spp.) was abundant in the study area. The flux rates of carotenoids were generally highest at 50 m, and approximately double the flux rates at deeper horizons, however, at Inner Bay sites, the mean flux rates of carotenoids were greatest at 200 m, and 3 times greater than that of 50 m. Such anomalous high fluxes at 200 m imply that grazers were locally abundant between 100 m and 200 m at these sites close to land, and this hypothesis is supported by visual evidence of lots of fecal pellets in the 200 m trap. Integrates standing stocks versus sinking pigments data support that particulate material in Prydz Bay was not recycled rapidly.
The stability of carotenoid pigments extracted from Chrysanthemum petals against pH, sugar, and organic acid was investigated. The contents of total carotenoids in C. boreale and C. morifolium were 3.37mg% and 4.56mg% Per fresh weight, respectively. The elect of pH on the stability of extracted carotenoids showed that the periods reaching 50% of pigment retention were more than 5 to 6 days in pH 4, and the longer periods in pH 6 to 7 in both samples. The addition of sugars such as sucrose, sorbitol, glucose and fructose resulted in the reduction in pigment stability of C. boreale, but C. morifolium was contrast to C. boreale. However, citric acid and ascorbic acid were found to have a protective effect on both carotenoid samples extracted from C. boreale and C. morifolium.