검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        2.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For solving phase separation of nanoparticles and graphene oxide (GO) in the application process, MgWO4– GO nanocomposites were successfully synthesized using three different dispersants via a facile solvothermal-assisted in situ synthesis method. The structure and morphology of the prepared samples were characterized by X-ray diffraction, Scanning electron microscopy, Transmission electron microscopy, Fourier transform infrared and Raman techniques. The experimental results show that MgWO4 nanoparticles are tightly anchored on the surfaces of GO sheets and the agglomeration of MgWO4 nanoparticles is significantly weakened. Additionally, MgWO4– GO nanocomposites are more stable than self-assembly MgWO4/ GO, which there is no separation of MgWO4 nanoparticles and GO sheets by ultrasound after 10 min. The catalytic results show that, compared with bare MgWO4, MgWO4– GO nanocomposites present better catalytic activities on the thermal decomposition of cyclotetramethylenete tranitramine (HMX), cyclotrimethylene trinitramine (RDX) and ammonium perchlorate (AP). The enhanced catalytic activity is mainly attributed to the synergistic effect of MgWO4 nanoparticles and GO. MgWO4– GO prepared using urea as the dispersant has the smallest diameter and possesses the best catalytic action among the three MgWO4– GO nanocomposites, which make the decomposition temperature of HMX, RDX and AP reduce by 10.71, 11.09 and 66.6 °C, respectively, and the apparent activation energy of RDX decrease by 68.6 kJ mol−1.
        4,000원
        3.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the current study, oxidative decomposition of a volatile organic compound was investigated at room temperature and pressure. The experiment was carried out in lower ethylene concentration and with various higher gas flow rates. The reactor has 7 different compartments in which the reaction takes place independently. Plasma was generated inside each compartment by the application of alternating current (AC) voltage. 5 wt% manganese loaded and 5 wt% silver loaded 13X zeolite were used as catalysts. Bare zeolite showed higher ethylene decomposition efficiency than Ag loaded and Mn loaded zeolite. Ozone concentration was increased slightly while increasing the SIE, reached a maximum and started decreasing. Ag loaded zeolite also showed similar decomposition efficiency, but the concentration of ozone was greatly lowered.
        4,000원
        4.
        2008.09 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        The aim of this study is to investigate the potential of Al-MCM-48 for the dioxin decomposition reaction. As a model reaction for the dioxin decomposition, chlorobenzene was decomposed over Al-MCM-48 in a fixed-bed reactor. Characteristics of catalysts were determined by N2 adsorption-desorption isotherms (BET), and NH3-temperature programmed desorption (NH3-TPD), X-ray diffraction (XRD) methods. The activity of Al-MCM-48 (15) was higher than that of Al-MCM-48 (60) due to its higher amount acid sites. It can be concluded from the results of this study that Al-MCM-48 with higher acidity can be effectively applied to dioxin decomposition catalyst.
        4,000원
        5.
        2013.08 KCI 등재 서비스 종료(열람 제한)
        Sulfur hexa-fluoride has been used as a etching gas in semiconductor industry. From the globally environmental issues, it is urgent to control the emissions of this significant greenhouse gas. The main objective of this experimental investigation was to find the effective catalyst for SF6 decomposition. The precursor catalyst of hexa-aluminate was prepared to investigate the catalytic activity and stability. The precursor catalyst of hexa-aluminate was modified with Ni to enhance the catalytic activities and stability. The catalytic activity for SF6 decomposition increased by the addition of Ni and maximized at 6wt% addition of Ni. The addition of 6wt% Ni in precursor catalyst of hexa-aluminate improved the resistant to the HF and reduced the crystallization and phase transition of catalyst.
        6.
        2009.07 KCI 등재 서비스 종료(열람 제한)
        Catalytic activities of V2O5/TiO2 catalyst were investigated under reaction conditions such as reaction temperature, catalyst size, inlet concentration and space velocity. A 1,2-dichlorobenzene(1,2-DCB) concentrations were measured in front and after of the heated V2O5/TiO2 catalyst bed, and conversion efficiency of 1,2-DCB was determined from it's concentration difference. The conversion of 1,2-DCB using a pellet type catalyst in the bench-scale reactor was lower than that with the powder type used in the micro flow-scale reactor. However, when the pellet size was halved, the conversion was similar to that with the powder type catalyst. The highest conversion was shown with an inlet concentration of 100 ppmv, but when the concentration was higher or lower than 100 ppmv, the conversion was found to decrease. Complete conversion was obtained when the GHSV was maintained at below 10,000 h-1, even at the relatively low temperature of 250°C. Water vapor inhibited the conversion of 1,2-DCB, which was suspected to be due to the competitive adsorption between the reactant and water for active sites.
        7.
        2008.11 KCI 등재 서비스 종료(열람 제한)
        This study examined the catalytic destruction of 1,2-dichlorobenzene on V2O5/TiO2 nanoparticles. The V2O5/TiO2 nanoparticles were synthesized by the thermal decomposition of vanadium oxytripropoxide and titanium. The effects of the synthesis conditions, such as the synthesis temperature and precursor heating temperature, were investigated. The specific surface areas of V2O5/TiO2 nanoparticles increased with increasing synthesis temperature and decreasing precursor heating temperature. In addition, the removal efficiency of 1,2-dichlorobenzene was promoted by a decrease in heating temperature. However, the removal efficiency of 1, 2-dichlorobenzene was decreased by an anatase to rutile phase transformation at temperatures 1,300℃.