Synthesis of RGO (reduced graphene oxide)-CdS composite material was performed through CBD (chemical bath deposition) method in which graphene oxide served as the support and Cadmium Sulfate Hydrate as the starting material. Graphene-based semiconductor photocatalysts have attracted extensive attention due to their usefulness for environmental and energy applications. The band gap (2.4 eV) of CdS corresponds well with the spectrum of sunlight because the crystalline phase, size, morphology, specic surface area and defects, etc., of CdS can affect its photocatalytic activity. The specific surface structure (morphology) of the photocatalyst can be effective for the suppression of recombination between photogenerated electrons and holes. Graphene (GN) has unique properties such as a high value of Young's modulus, large theoretical specific surface area, excellent thermal conductivity, high mobility of charge carriers, and good optical transmittance. These excellent properties make GN an ideal building block in nanocomposites. It can act as an excellent electron-acceptor/transport material. Therefore, the morphology, structural characterization and crystal structure were observed using various analytical tools, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. From this analysis, it is shown that CdS particles were well dispersed uniformly in the RGO sheet. Furthermore, the photocatalytic property of the resulting RGO-CdS composite is also discussed in relation to environmental applications such as the photocatalytic degradation of pollutants. It was found that the prepared RGO-CdS nanocomposites exhibited enhanced photocatalytic activity as compared with that of CdS nanoparticles. Therefore, better efficiency of photodegradation was found for water purification applications using RGO-CdS composite.
The polycrystalline CdS of large scale were grown by chemical pyrolysis deposition for Cu2S/CdS heterojunction solar cells. For high quality CdS polycrystalline thin films, the chemical solution was deposited on indium tin oxide(ITO) glasses at the temperature of 500℃ for 15 second and annealed at 350℃ for 20 minute or 500℃ for 30 second. To fabricate high efficiency solar cells, optical and electrical properties, morphology by SEM and x-ray diffraction on polycrystalline CdS thin films were investigated. From the I-V characteristics of Cu2S/CdS heterojunction, the open circuit voltage, Voc was 0.7 V and the short circuit current, Isc was 4.2 mA. We found that the fill factor(FF) was 0.5 and the efficiency was 2.5%.