이 연구에서는 정사각 단면을 갖는 덕트 내부에 원심력의 영향을 받는 유동의 천이특성을 실험 및 수치적으로 규명하였다. 실험적 연구로서 레이저도플러 속도계를 이용하여 축방향속도를 측정하였고, 상용소프트웨어인 플루언트를 이용한 전산유체 시뮬레이션으로 천이특성을 고찰하였다. 유동의 발달은 딘수와 굽힘각에 의존한다는 사실을 알 수 있었으며 덕트의 중앙에서의 속도분포는 원심력 때문에 내외벽보다 낮은 값을 나타내었다.
High-Speed Centrifugal Compaction Process (HCP) is a wet compacting method, in which powders are compacted under a huge centrifugal force. The HCP was well applied to small alumina specimens, but the compact easily cracked when we applied the HCP to other materials. We clarified how the cracks introduced and found that the formation of such a flow pattern was related to the Colioli's force in the centrifugal field.
There are two different assertions on the rolling error in the solid-controlled gyro compass which contains two rotors in its inner gyro sphere. One assertion is that there is a rolling error and the other is that there is no rolling error. This paper examines the rolling error caused by the centrifugal force by the experiment to reveal that the first assertionis reasonable, and it also attempts to explain qualitatively how the rolling error occurs. The Hokushin-Plath gyro compass is chosen as a model. The rolling error is examined by the swing test in various periods. From the tests, the following results are obtained. As long as the swing is continued under the fixed condition of the ship's heading, the swinging period and the amplitude, no error appears. In case the gyro compass is affected by the swingings except those of the cardinal planes, the error starts to appear only after the swing is finished and it is increasing slowly. It takes about 20 minutes for the error to reach its maximum value. The type of this error is a quadrantal one which makes the ship's heading high in the first and third quarters and low in the second and fourth quarters. But in each case the experimental maximum error is greater than the theorectical one.