This study aimed to investigate the effect of a coating agent on pork storage. Pork was coated with a coating agent containing sodium carboxymethyl cellulose (CMC) and mandarin peel powder (M). The treatments were divided into control, a 0.1% CMC treatment, and a 0.1% CMC +5% M treatment, and pH, color, 2-thiobarbituric acid reactive substances (TBARS), volatile basic nitrogen (VBN), and the number of viable cell counts were measured. In the case of redness (a), it was found that the reduction over the storage period was less in the 0.1% CMC + 5% M treatment than in the control and the 1% CMC treatment. When stored at 4oC and 25oC, TBARS of pork tended to increase during the storage period, followed by control, 0.1% CMC treatment, and 0.1% CMC + 5% M treatment, indicating that lipid oxidation was most suppressed in pork coated with mandarin peel powder. As a result of measuring the VBN of pork stored at 4oC and 25oC, the 0.1% CMC + 5% M treatment showed lower values than the control and 0.1% CMC treatment. When the film-coated pork was stored at 4oC, the number of viable cell counts in the 0.1% CMC +5% M treatment area was 7.13±0.96 log CFU/g on the 12th day of storage, delaying the growth of viable cell counts for approximately 3 d more than other treatments. Therefore, coating pork with a film containing CMC and mandarin peel powder has been confirmed to delay the increase in the number of viable cell counts while reducing the quality change during pork storage, which is an effective alternative to improving the storage of fresh food as an edible film.
Although the basalt fiber has superior fire-resistance and chemical resistance, it has many disadvantages in its applications. Generally, the tensile and loop strengths of basalt fiber were decreased with generated frictional heat during industial appplications. To solve this problem, polytetrafluoroethylene (PTFE) coating system was introduced and a sutable coating condition was evaluated. The basalt fiber was pre-treated with triethoxytrifluoropropylsilane (TMTFPS) at various pHs and then coated with PTFE dispersions with penetrating agent sodium bis(2-ethylhexyl)sulfo succinate (DOS-Na) to increase the tensile and loop strengths as well as to reduce the fibril during working. A universial testing machine (Instron Model 3366) was used to measure tensile and loop strengths. When the PTFE dispersion with 0.25 wt% of DOS-Na was coated on the surface of basalt fiber after pre-treating with 5 wt% of PTFE, the highest tensile and loop strengths were reached to 3.5 gf/D and 2.4 gf/D, respectively.
본 연구는 항균성 코팅제의 개념과 동향파악으로 항균성 코팅제의 연구개발의 방향을 설정하는데 도움을 주기 위한 것이다. 항균제는 미생물을 제거하거나 성장을 저지하는데 사용되는 화합물이며 항균 코팅제에 함유되는 항균제용 재료는 무기물, 금속, 저분자 유기물, 천연유기물, 고분자가 있다. 항균코팅제는 생활용품, 병원용품, 산업용품, 전자제품, 의류, 건축 내장재 등의 표면의 항균성 부여에 쓰인다. 기존 항생제는 세균의 세포벽을 손상하지 않고 미생물을 침투하나 항균성 고분자는 세포막을 파괴하므로 항생제의 내성을 방지할 수 있다. 대부분의 고분자 항균제는 양이온 고분자에 초점을 맞추고 있다. 항균제의 분자설계와 코팅제 배합의 합리화로 항균제의 선택성, 내구성, 독성 문제가 개선될 것이다.
The objective of this study is to determine the effect of soy protein isolate (SPI) film coating on the color, firmness, viscosity and weight loss of Rice Cake stored at 15, 20 and (RH 50%) for 30 days. Raw materials mixed with SPI and cocoa powder (10:0, 7:3, 5:5, 3:7, w/w) were prepared. After adding sugar and shortening to raw materials, the mixture were refined to 25 micron of particle size. Coating of Rice Cake were carried out at . SPI coated Rice Cake had higher internal and external firmness comparing to the control at . SPI coated Rice Cake showed smooth surface morphology and had 0.71-1.01 mm of thickness. SPI coated Rice Cake showed less weight loss for 30 days compared to controls. SPI coating solution was successfully coated on Rice Cake and extended shelf-life over 15 days at room temperature.