검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        2.
        2023.05 구독 인증기관·개인회원 무료
        Licensing for the application of the Polymer Concrete High Integrity Container (PC-HIC) to nuclear power plants has been completed or is in progress. Approval for the expanded application to all domestic nuclear power plants has been completed to utilize the 860 L PC-HICs for the 2nd stage surface repository, and the regulatory body is reviewing the license application to use the 510 L PCHICs for the 1st stage underground repository in the representative nuclear power plants. The 860 L PC-HICs, which have been licensed for all domestic nuclear power plants, will be used for safe storage management and disposal of low-dose dried concentrate waste and spent resin, and a total of 100 units is expected to be supplied to representative nuclear power plants that have been licensed first. The 510 L PC-HICs are planned to be used for underground disposal of high-dose spent resin and dried concentrate waste. Prior to the application of PC-HICs to nuclear power plants and disposal to the repository, it is necessary to establish realistic and reasonable requirements through close consultations between waste generator and disposal operators to ensure the suitability for disposal of PC-HIC packages and to carry out disposal delivery and acceptance work. Since the Polymer Concrete High Integrity Container (PC-HIC) has long-term integrity of more than 300 years and the barrier does not temporarily collapse, spent resin and dried concentrate waste, which are radioactive wastes to be solidified, can be disposed of much more safely in PC-HIC packages than solidified types. Acceptance criteria for the PC-HIC packages should be prepared fully reflecting the advantages of PC-HIC, and quality assurance methods for physical/chemical/radiological characterization results based on the Waste Certification Program (WCP) should be supported. In addition, infrastructure should be secured for safe transportation, handling, and storage of the PC-HIC packages. In this paper, we have tried to find a reasonable acceptance criteria, quality assurance method, and infrastructure level according to the dose and disposal conditions of PC-HIC packages.
        3.
        2022.05 구독 인증기관·개인회원 무료
        In this study, a drop analysis of metallic disposal containers for radioactive wastes is performed according to accident scenarios at the disposal site. The weight of the disposal container is about 8 tons, and the ingot-type wastes are loaded in the disposal container. To simulate the floor of the disposal site as the impact target, the reinforced concrete pad is modeled. High impact energy of the disposal container due to their heavy weight and high drop height causes excessive deformation and failure of the concrete target having relatively weak strength. Dynamic growth of cracks due to such failures causes penetration and delamination of concrete. Since the impact force delivered to the container strongly depends on the failure of the concrete pad, it is important to properly simulate the failure of the concrete in the drop analysis. A material erosion method can be used to simulate the concrete failure. In the case of applying erosion based on the finite element method (FEM), the element is deleted when the element exceeds a certain criterion, which causes material and energy loss problem. To solve this problem, mesh-free methods such as smoothed particle hydrodynamics (SPH) can be commonly used, but the mesh-free method has the disadvantage of incurring high numerical cost. Therefore, an adaptive method combining SPH and FEM-based SOLID elements is used for concrete target modeling to simulate excessive deformation and failure of the concrete target. In the adaptive coupling method of SPH and SOLID, the concrete target is first modeled as a solid element. When the damage of concrete exceeds the failure criterion, the solid element is eroded and the SPH element replacing the solid element is activated. Since the activated SPH element continues to participate in the impact, the problem of loss of materials and energy can be effectively solved. In this way, analysis results consistent with actual physical phenomena can be obtained.