검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2023.11 구독 인증기관·개인회원 무료
        Spent nuclear fuels should be safely stored until being disposed and dry storage system is predominantly used to retain the fuels. Thermal analysis to estimate temperatures of spent nuclear fuel and the storage system should be performed to evaluate whether the temperatures exceed safety limit. Recently, thermal hydraulic analysis with CFD codes is widely used to investigate the temperature of spent nuclear fuel in dry storage. COBRA-SFS is a legacy code based on subchannel analysis code, and its fidelity is verified for evaluating the thermal analysis for licensing a dry cask system. Herein, thermal analysis result based on CFD and COBRA-SFS codes is compared and the Dry Cask Simulator (DCS) is assessed as a benchmark experiment in this study. Extended Storage Collaborating Program (ESCP) led by the Electric Power Research Institute (EPRI) is organized to address the degradation effects of spent nuclear fuel during long-term dry storage, and DCS is the first phase of the program. The dry storage system, containing a single BWR assembly in a canister, was designed to produce validation-quality data for thermal analysis model. ANSYS FLUENT was used to simulate DCS. Simulations were conducted in various decay heat and helium pressure inside the canister. In realistic conditions of decay heat and helium pressure of actual dry cask system, CFD and COBRA-SFS analysis results gave good agreement with experimental measurement. Peak temperatures of channel can, basket, canister and shell predicted by CFD simulation also showed good prediction and the discrepancies were less than 7 K while measurements uncertainty was 7 K. In high decay heat and high pressure condition, however, CFD and COBRA-SFS underestimated peak cladding temperature than experimental results.
        2.
        2023.05 구독 인증기관·개인회원 무료
        Spent nuclear fuels should be safely stored until being disposed and dry storage system is predominantly used to retain the fuels. During long-term storage, there are several mechanisms that could result in the degradation of spent nuclear fuels, and the temperature is the most important parameter to predict and estimate the degradation behaviors. Therefore, thermal analysis to estimate temperatures of spent nuclear fuel and the storage system should be performed to evaluate whether the temperatures exceed safety limit. Recently, thermal hydraulic analysis with CFD codes is widely used to investigate the temperature of spent nuclear fuel in dry storage. Herein, Explicit CFD analysis model is introduced and validated by estimating the thermal hydraulic response of the dry storage system that is Dry Cask Simulator (DCS). Extended Storage Collaborating Program (ESCP) led by the Electric Power Research Institute (EPRI) is organized to assess degradation effects of spent nuclear fuel during long-term dry storage, and DCS is the first phase of the program. The dry storage system, containing a single BWR assembly in a canister, was designed to produce validation-quality data for thermal analysis model. ANSYS FLUENT is used to simulate DCS, and the test condition of 0.5 kW decay heat and 100 kPa helium pressure was investigated in this study. In case of peak cladding temperature (PCT), PCT from the experiment was 376 K while that of CFD was 374 K. It implies CFD simulation gives good agreement with experimental measurement. Peak temperatures of channel can, basket, canister and shell predicted by CFD simulation also show good prediction and the discrepancies were less than 7 K while measurements uncertainty was 7 K.
        3.
        2022.05 구독 인증기관·개인회원 무료
        For transport containers for radioactive wastes, a drop test should be performed at a height of 0.3– 1.2 m on a rigid target depending on the weight as a normal condition in the regulation. In the drop test, a strain gauge is commonly used to measure the local strain, and the position of the strain gauges is determined by the experiences of the engineer in advance of the test. For this reason, the strains can be measured at only predetermined points. The DIC (Digital Image Correlation) method using highspeed cameras can be used to measure the change in strain over the region of interest. In addition, it is possible to measure effectively even in areas with high strain gradients that are difficult to measure with strain gauges. Therefore, the DIC method can measure the strain change according to time over the entire load path. When the drop test of the transport container is performed, the impact load is delivered through the lower corner fittings-corner posts-upper corner fittings-lids. In this study, white spray was sprayed on these main load path, and black speckles were created on the spayed surface to trace the rigid motion of speckles. The images taken during the drop test can be used to create a strain field over region of interest.
        4.
        2022.05 구독 인증기관·개인회원 무료
        In this study, a drop analysis of metallic disposal containers for radioactive wastes is performed according to accident scenarios at the disposal site. The weight of the disposal container is about 8 tons, and the ingot-type wastes are loaded in the disposal container. To simulate the floor of the disposal site as the impact target, the reinforced concrete pad is modeled. High impact energy of the disposal container due to their heavy weight and high drop height causes excessive deformation and failure of the concrete target having relatively weak strength. Dynamic growth of cracks due to such failures causes penetration and delamination of concrete. Since the impact force delivered to the container strongly depends on the failure of the concrete pad, it is important to properly simulate the failure of the concrete in the drop analysis. A material erosion method can be used to simulate the concrete failure. In the case of applying erosion based on the finite element method (FEM), the element is deleted when the element exceeds a certain criterion, which causes material and energy loss problem. To solve this problem, mesh-free methods such as smoothed particle hydrodynamics (SPH) can be commonly used, but the mesh-free method has the disadvantage of incurring high numerical cost. Therefore, an adaptive method combining SPH and FEM-based SOLID elements is used for concrete target modeling to simulate excessive deformation and failure of the concrete target. In the adaptive coupling method of SPH and SOLID, the concrete target is first modeled as a solid element. When the damage of concrete exceeds the failure criterion, the solid element is eroded and the SPH element replacing the solid element is activated. Since the activated SPH element continues to participate in the impact, the problem of loss of materials and energy can be effectively solved. In this way, analysis results consistent with actual physical phenomena can be obtained.
        11.
        2004.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study presents the thermal analyses of a spent fuel dry storage cask under normal and off-normal conditions. The environmental temperature is assumed to be 15 under the normal condition. The off-normal condition has an environmental temperature of 38 . An additional off-normal condition is considered as a partial blockage of the air inlet ducts. Two of the four air inlet ducts are assumed to be completely blocked. The significant thermal design feature of the storage cask is the air flow path used to remove the decay heat from the spent fuel. Natural circulation of the air inside the cask allows the concrete and fuel cladding temperatures to be maintained below the allowable values. The finite volume computational fluid dynamics code FLUENT was used for the thermal analysis. The maximum temperatures of the fuel rod and concrete overpack were lower than the allowable values under the normal and off-normal conditions.
        4,000원