Electric doors have been applied in urban trains since 2007 and operated for a long time. Recently, the failure of mechanical devices in electric doors have been increasing. The door is a device that is directly related to the safety of passengers. The rivet breakage of a ball/nut assembly may occur to an accident during train operation. In this study, the operating voltage and acceleration data of the door were collected for rivet condition monitoring, and 4 features were extracted in the frequency domain using the acceleration data. The classification performance of the rivet condition according to the axial direction of the acceleration data and 4 kernel functions was evaluated using SVM algorithm. When the X-axis data and Gaussian kernel function were used, the highest classification performance was shown for the electric door’s rivet with 90% accuracy.
기후변화에 따른 자연재해의 증가하고 있다. 이에 자연재해에 의한 토목구조물의 피해 및 붕괴를 예방하기 위하여 처짐 및 균열을 지속적인 관리가 필요하다. 이에 효과적인 구조물 관리를 위해 광학 이미지 기술이 유지관리 기술에 적용되고 있 다. 하지만 광학이미지 기술은 촬영에 따른 주변 조건의 영향이 크며, 그 때문에 촬영조건에 대한 검증이 필요하다. 이를 위해 본 논문에서 촬영조건으로 자연광, 촬영매수, 촬영거리를 따른 수직변위 추정값의 정확도에 대해 검증하였다. 실험을 통 해 확인한 결과 자연광이 수직변위를 추정하는데 자연광이 가장 큰 영향을 미치는 것을 확인할 수 있었고, 촬영거리 또한 수직변위를 검토하는데 주요한 영향을 미치는 것을 확인할 수 있었다. 본 결과를 통해서 외부환경에서 촬영하는데 활용하여 변위 추정 시 발생하는 오차를 최소화할 수 있으며, 이러한 과정을 통해 구조물 유지관리에 적용할 수 있다.
Trouble prevention of facilities in operation process plays an Important role for Improving facilities productivity as pro-duct-on systemization is installed with development of facilities automatization Condition monitoring predicts machine's in-ternal c