The design of the corner joints in furniture structures is very important to firmly support the loaded structure and to sufficiently maintain the durability and stability. Therefore, the strength of the corner joints and the rigidity of the connected panels play a very important role in the structural performance of the assembled furniture. The structural properties can be measured or calculated experimentally or numerically, and compared by representing the applyed forces or bending moments as a function of deformed value. This paper shows the numerical models to determine the strength and stiffness of the 3-types of corner joints for simple designed furniture. Based on the finite element results, the maximum stresses are concentrated on the corner joints designed with MDF panels. And the deformation resistances and maximum applied loads are calculated for furniture corner joints under tensile and compressive moment.
In this study, two full-scale gravity load-designed reinforced concrete corner beam-column joints were tested by being subjected to uniand bi-directional cyclic lateral loading. The test variable was loading type: uni- or bi-directional loading. To investigate the effect of the loading type on the cyclic behavior of joint specimens, damage progression, force-deformation relation, contribution of joint deformation to total drift, joint stress-strain response, and cumulative energy dissipation were investigated. The test data suggest that bidirectional loading can amplify damage accumulation in the joint region.