Background: Short foot exercise, which is an intrinsic foot muscle exercise proposed by the foot core system, is used to improve the strength of intrinsic foot muscles and sensory input and function of the foot. However, there is a lack of studies that assessed the improvement in foot function after short foot exercise in patients undergoing rehabilitation after a modified Broström operation of the ankle joint. Objectives: To investigate the effects of short foot exercise on intrinsic foot muscle cross-sectional area and balance ability in patients who had undergone a modified Broström operation of the ankle joint. Design: A single blind, randomized controlled trial. Methods: Sixteen patients who were undergoing ankle rehabilitation exercises following the modified Broström operation were randomized into two groups. General physical therapy, short foot exercises, and ankle rehabilitation programs were performed in the experimental group (n=8), whereas general physical therapy and ankle rehabilitation programs were performed in the control group (n=8). For outcome measures, the intrinsic muscles of the foot were imaged using the Sonimage HS1 musculoskeletal ultrasound system. The Y-balance test and RS-foot scan system were used to confirm dynamic balance ability and static balance ability. Results: The cross-sectional area of the abductor hallucis and dynamic balance ability significantly improved in the experimental group that underwent short foot exercise compared to the control group (P<.05). In contrast, static balance ability was not significantly different between the two groups (P>.05). Conclusion: Short foot exercise successfully increased the cross-sectional area of the abductor muscle and improved dynamic balance after a modified Broström operation
Background: The craniocervical flexion (CCF) exercise is one of the effective exercise in correcting forward head posture (FHP). However, some people with FHP achieve CCF with compensatory movements, for example, low cervical flexion using superficial neck flexors such as the sternocleidomastoid (SCM) muscle. No study has yet investigated whether a dualpressure biofeedback unit (D-PBU) method to prevent low cervical flexion would be helpful in performing pure CCF movement. Objects: The purpose of this study was to compare the effects of the CCF using D-PBU method and the traditional CCF method on the cross-sectional area (CSA) of the longus colli muscle (LCM) and the activity of SCM muscle in subjects with FHP. Methods: Twentyfour FHP subjects (male: 16, female: 8) were recruited for this study. All subjects performed CCF using two different methods: The traditional CCF method and the CCF using D-PBU method. The CSA of the LCM was measured via ultrasound, and surface electromyography was used to measure SCM muscle activity. Results: The change in CSA of the LCM was significantly larger during the CCF using D-PBU method (1.28±.09) compared with the traditional CCF method (1.19±.08) (p<.05). The SCM muscle activity using the CCF using D-PBU method (2.01±1.97 %MVIC) was significantly lower than when using the traditional CCF method (2.79±2.32 %MVIC) (p<.05). Conclusion: The CCF using D-PBU method can be recommended for increasing LCM activation and decreasing SCM muscle activity during CCF movement in subjects with FHP.
본 연구는 단면변화를 고려한 수위-단면적 변화 및 평 균 유속-단면적 간의 상관관계를 분석하여 유량 산정 및 하천관리에 활용하고자 하였다. 수위에 따른 단면적 변화 는 SB-A 지점은 1.0 m, 1.9 m, SB-C 지점은 0.6 m, 1.8 m, CL-A 지점은 1.0 m, 1.8 m, OS-A 지점은 0.6 m, 2.0m에서 발생되었다. 이 중 첫 번째 변화는 평∙저수기에 해당되 고, 두 번째 변화는 홍수기 및 하천 좌∙우 안에 인위적 ∙자연적으로 형성된 둔치 등으로 판단된다. 수위-단면적 변화에 따른 관계식의 기울기는 지수형 0.5539~1.9013, 선형 9.040~52.544의 범위를 가진다. 기울기는 두 곡선 모두 고수위로 갈수록 증가하는 경향을 보인다. 평균유 속-단면적 변화의 관계는 지수와 직선의 방정식으로 지 수형 기울기와 상관계수는 각각 0.1182~0.8734, 0.22~ 0.86이며, 선형의 기울기와 상관계수는 0.0028~0.1032, 0.20~0.87로 분석되었다. SB-A, SB-C 지점의 저수위는 다른 수위보다 상관관계가 높게 산정되었는데, 이는 수위 구간이 좁고, 하천 단면적의 변화가 크지 않기 때문으로 판단된다. CL-A, OS-A 지점은 월류보의 영향으로 저수위 일 경우에 상관관계가 낮았다. 수위-단면적, 평균유속-단 면적의 상관관계 및 곡선식 등을 이용하여 하천 정비계 획 등의 수립에 활용할 수 있으며, 제외지의 단면적이 변 하는 지점의 유량 변화 등의 예측에 활용할 수 있을 것 이다.
The lumbrical muscles contribute to the intrinsic plus position, that is simultaneous metacarpophalangeal (MCP) flexion and interphalangeal (IP) extension. The strength of the lumbrical muscles is necessary for normal hand function. However, there is no objective and efficient method of strength measurement for the lumbrical muscles. In addition, previous studies have not investigated the measurement of the cross-sectional area (CSA) of the lumbrical muscles using ultrasonography (US) and the relationship between lumbrical muscle strength in the intrinsic plus position and the CSA. Therefore, the purpose of this study was to identify the measurement method of the CSA of the lumbrical muscles using US and to examine the relationship between maximal isometric strength and the CSA of lumbrical muscles. Nine healthy males participated in this study. Maximal isometric strength of the second, third, and fourth lumbrical muscles was assessed using a tensiometer in the intrinsic plus position which isolated MCP flexion and IP extension. The CSA of the lumbrical muscles was measured with an US. The US probe was applied on the palmar aspect of the metacarpal head with a transverse view of the hand in resting position. There was no significant difference between maximal isometric strength of the lumbrical muscles, but the fourth lumbrical muscle was stronger than the others. The CSA of the lumbrical muscles was significantly different and the fourth lumbrical muscle was significantly larger than the second lumbrical muscle. There was moderate to good correlation between maximal isometric strength and the CSA of the lumbrical muscles. Therefore, we conclude that maximal isometric strength of the lumbrical muscles was positively correlated to the CSA of the lumbrical muscle in each finger, while the measurement of the CSA of the lumbrical muscles, using US protocol in this study, was useful for measuring the CSA of the lumbrical muscles.
최근 풍력에너지에 대한 관심과 요구가 증가함에 따라, 강재타워 이외에 콘크리트 풍력 타워 및 합성형 풍력타워에 대한 연구가 진행되고 있다. 해상풍력발전에서는 터빈의 대형화 추세에 맞춰 지지구조인 타워 또한 대형화되고 있으며, 강재 타워의 경우 세장비 증가로 인하여 좌굴 문제가 대두되고 있다. 따라서 대형 터빈에 대응하는 합성형 풍력 타워가 개발되고 있으나, 단일 타워 구조의 경우, 모멘트에 지배되는 풍력타워의 특성상, 모멘트에 대해 안전한 설계를 하게 되면 축하중에 대해서는 과다설계가 이루어지며, 풍하중 및 해양 하중 또한 증가하게 된다. 따라서 본 연구에서는 다수의 소구경 합성기둥을 적용한 복합형 풍력타워를 제안하였으며, 각 소구경 합성기둥의 배열에 따라 동일 모멘트 성능을 발휘할 때 기둥 단면적의 변화를 살펴보고, 그 관계를 도시하였다.