This study manufactured a CIG-based composite coating layer utilizing a new warm spray process, and amixed powder of Cu-20at.%Ga and Cu-20at.%In. In order to obtain the mixed powder with desired composition, theCu-20at.%Ga and Cu-20at.%In powders were mixed with a 7:1 ratio. The mixed powder had an average particle size of35.4 µm. Through the utilization of a warm spray process, a CIG-based composite coating layer of 180 µm thicknesscould be manufactured on a pure Al matrix. To analyze the microstructure and phase, the warm sprayed coating layerunderwent XRD, SEM/EDS and EMPA analyses. In addition, to improve the physical properties of the coating layer, anannealing heat treatment was conducted at temperatures of 200℃, 400℃ and 600℃ for 1 hour each. The microstructureanalysis identified α-Cu, Cu4In and Cu3Ga phases in the early mixed powder, while Cu4In disappeared, and additionalCu9In4 and Cu9Ga4 phases were identified in the warm sprayed coating layer. Porosity after annealing heat treatmentreduced from 0.75% (warm sprayed coating layer) to 0.6% (after 600℃/1 hr. heat treatment), and hardness reducedfrom 288 Hv to 190 Hv. No significant phase changes were found after annealing heat treatment.
The electromagnetic wave absorption sheets were fabricated by mixing of nanocrystalline soft magnetic powder, charcoal powder and polymer based binder. The complex permittivity, complex permeability, and scattering parameter have been measured using a network analyzer in the frequency range of 10 MHz10 GHz. The results showed that complex permittivity of sheets was largely dependent on the frequency and the amount of charcoal powder : The permittivity was improved up to 100 MHz, however the value was decreased above 1 GHz. The power loss of electromagnetic wave absorption data showed almost the same tendency as the results of complex permittivity. However, the complex permeability was not largely affected by the frequency, and the values were decreased with the addition of charcoal powder. Based on the results, it can be summarized that the addition of charcoal powder was very effective to improve the EM wave absorption in the frequency range of 10 MHz1 GHz.