In the present study, we identified differentially methylated region (DMR) upstream of Dnmt1o and Dnmt1s gene in early porcine embryos. Porcine Dnmt1o had at least one DMR which was located between —530 bp to —30 bp upstream from transcription start site of the Dnmt1o gene. DNA methylation analyses of Dnmt1o revealed the DMR to be hypomethylated in oocytes, whereas it was highly methylated in sperm. Moreover, the DMR upstream of Dnmt1o was gradually hypermethylated from oocytes to two cells and dramatically changed in the methylation pattern from four cells to BL stages in an in vivo. In an IVF, the methylation status in the DMR upstream of Dnmt1o was hypermethylated from one cell to eight cells, but demethylated at the Morula and BL stages, indicating that the DNA methylation pattern in the Dnmt1o upstream ultimately changed from stage to stage before the implantation. Next, to elucidate whether DNA methylation status of Dnmt1s upstream is stage-by-stage changed in during porcine early development, we analyzed the dynamics of the DNA methylation status of the Dnmt1s locus in germ cell, or one cell to BL cells. The Dnmt1s upstream was highly methylated in one and eight cells, while less methylated in two, four, morula, and BL cells. Taken together, our data demonstrated that DNA methylation and demethylation events in upstream of Dnmt1o/Dnmt1s during early porcine embryos dramatically occurred, and this change may contribute to the maintenance of genomewide DNA methylation in early embryonic development.
During normal early embryonic development in mammals, the global pattern of genomic DNA methylation undergoes marked changes. The level of methylation is high in male and female gametes. Thus, we cloned the cDNA of the porcine DNA methyltransferase 1 (Dnmt1) gene to promote the efficiency of the generation of porcine clones. In this study, porcine Dnmt1 cDNA was sequenced, and Dnmt1 mRNA expression was detected by reverse transcription-polymerase reaction (RT-PCR) in porcine tissues during embryonic development. The porcine Dnmt1 cDNA sequence showed more homology with that of bovine than human, mouse, and rat. The complete sequence of porcine Dnmt1 cDNA was 4,774-bp long and consisted of an open reading frame encoding a protein of 1611 amino acids. The amino acid sequence of porcine DNMT1 showed significant homology with those of bovine (91%), human (88%), rat (76%), and mouse (75%) Dnmt1. The expression of porcine Dnmt1 mRNA was detected during porcine embryogenesis. The mRNA was detected at stages of porcine preimplantation development (1-cell, 2-cell, 4-cell, 8-cell, morula, and blastocyst stages). It was also abundantly expressed in tissues (lung, ovary, kidney and somatic cells). Further investigations are necessary to understand the complex links between methyltransferase 1 and the transcriptional activity in cloned porcine tissues.
DNA methylation is involved in epigenetic processes such as X-chromosome inactivation, imprinting and silencing of transposons. DNA methylation is a highly plastic and critical component of mammalian development The DNA methyltransferases (Dnmts) are responsible for the generation of genomic methylation patterns, which lead to transcriptional silencing. The maintenance DNA methyltransferase enzyme, Dnmt 1, and the de novo methyltransferase, Dnmt3a and Dnmt3b, are indispensable for development because mice homozygous for the targeted disruption of any of these genes are not viable. The occurrence of DNA methylation is not random, and it can result in gene silencing The mechanisms underlying these processes are poorly understood. It is well established that DNA methylation and histone deacetylation operate along a common mechanistic pathway to repress transcription through the action of methyl-binding domain proteins (MBDs), which are components of, or recruit, histone deacetylase (HDAC) complexes to methylated DNA. As a basis for future studies on the role of the DNA-methyl-transferase in porcine development, we have isolated and characterized a partial cDNA coding for the porcine Dnmt1. Total RNA of testis, lung and ovary was isolated with TRlzol according to the manufacture's specifications. 5 ug of total RNA was reverse transcribed with Super Script II in the presence of porcine Dnmt 1 specific primers. Standard PCRs were performed in a total volume of 50 ul with cDNA as template. Two DNA fragmenets in different position were produced about 700bp, 1500bp and were cloned into pCR II-TOPO according to the manufacture's specification. Assembly of all sequences resulted in a cDNA from 158bp of 5'to 4861bp of 3'compare with the known human maintenance methyltransferase. Now, we are cloning the unknown Dnmt 1 region by 5'-RACE method and expression of Dnmt 1 in tissues from adult porcine animals.
포유류 배아발생 중 DNA 메틸화는 세포분화와 유전자발현에서 중요한 역할을 하는 것으로 알려져 있다. 그러나, 생쥐 착상전 초기배아 발생 중 메틸화효소에 의해 유지되는 DNA 메틸화의 중요성과 자세한 기작은 잘 이해되고 있지 않다. 이 연구에서 DNA 메틸화의 역할에 관하여 알아보기 위하여, 성숙난자와 착상전 초기배아에서 DNA 메틸전이효소의 발현양상을 조사하였다. 이를 위해, DNA 메틸전이효소를 암호화하고 있는 cDNA에서 primer를 고안하였다.