The objective of this study was to develop PCR primers that are specific for Streptococcus sanguinis, Streptococcus parasanguinis, and Streptococcus gordonii. We designed the S. sanguinis-, S. parasanguinis-, and S. gordonii- specific primers, Ssa21-F3/Ssa21-R2, Spa17-F/Spa17-R, and Sgo41-F1/Sgo41-R1 respectively, based on the nucleotide sequences of the Ssa21, Spa17, and Sgo41 DNA probes that were screened using inverted dot blot hybridization (IDBH). The species-specificity of these primers was as- sessed against 43 strains of mitis group streptococci, in- cluding clinical strains of S. sanguinis, S. parasanguinis, and S. gordonii. The resulting PCR data revealed that species-specific amplicons had been obtained from all strains of the target species tested, and that none of these amp- licons occurred in any other strains from other species. These results suggest that the Ssa21-F3/Ssa21-R2, Spa17- F/Spa17-R, and Sgo41-F1/Sgo41-R1 primers may be useful in detecting S. sanguinis, S. parasanguinis, and S. gordonii at the species level, respectively.
The DNA probes Pn17 and Pn34 were evaluated for their ability to specifically detect clinical strains of P. intermedia and P. nigrescens from a Korean population by dot blot hybridization. These probes were sequenced by extension termination and their specificity was determined by Southern blot analysis. The results revealed that the Pn17 sequence (2,517 bp) partially encodes an RNA polymerase beta subunit (rpoB) and that Pn34 (1,918 bp) partially encodes both rpoB (1-169 nts) and the RNA polymerase beta subunit (rpoB'; 695-1918 nts). These probes hybridized with both HindIII- and PstI-digested genomic DNAs from the strains of P. intermedia and P. nigrescens used in this study. Interestingly, each of the hybrid bands generated from the HindIII-digested genomic DNAs of the two bacterial species could be used to distinguish between them via restriction fragment length polymorphism. These results thus indicate that Pn17 and Pn34 can simultaneously detect P. intermedia and P. nigrescens.