In the decommissioning process of nuclear power plants, Ni-59, Ni-63 and Fe-55 present in radioactive waste are crucial radionuclides used as fundamental indicators in determining waste treatment methods. However, due to their low-energy emissions, the chemical separation of these two radionuclides is essential compared to others. Therefore, this study aims to evaluate the suitability of various pre-treatment methods for decommissioning waste materials by conducting characteristic assessments at each chemical separation stage. The goal is to find the most optimized pre-treatment method for the analysis of Ni-59, Ni-63 and Fe-55 in decommissioning waste. The comparative evaluation results confirm that the chemical separation procedures for Fe and Ni are very stable in terms of stepwise recovery rates and the removal of interfering radionuclides. However, decommissioning waste materials, which mainly consist of concrete, metals, etc., possess unique properties, and a significant portion may be low-radioactivity waste suitable for on-site disposal. Considering that the chemical behavior and reaction characteristics may vary at each chemical separation stage depending on the matrix properties of the materials, it is considered necessary to apply cascading chemical separation or develop and apply individual chemical separation methods. This should be done by verifying and validating their effectiveness on actual decommissioning waste materials.
Chelating agents in low and intermediate radioactive wastes can form complexes with radionuclides and increase the mobility of the radionuclides. According to the Korea Radioactive Waste Agency (Acceptance criteria for low and intermediate radioactive waste, WAC-SIL-2022-1), if the amount of residual chelating agents in the waste are greater than 0.1%, the chemical names and residual amounts should be specified; if greater than 1%, the waste must be solidified and contain no more than 8%. The existing method for analyzing chelates in radioactive waste was based on UV–Visible spectrophotometry (UV-Vis), but the new method is based on liquid chromatography/mass spectrometry (LC-MS). The analysis was performed in aqueous solution before applying to real samples. Since the real sample may contain several heavy metals, it is expected that the chelates will exist as complexes. Therefore, 1.0×10-4 mol L-1 of EDTA (Ethylenediaminetetraacetic acid), DTPA (Diethylenetriaminepentaacetic acid), NTA (Nitrilotriacetic acid), and excess metals in aqueous solution were analyzed using HPLC using RP (Reverse Phase) column and HILIC (Hydrophilic interaction) column. When the RP column was used, each substance eluted without separation at the beginning of the analysis. However, when analyzed using a HILIC column, the peaks of each substance were separated. LC-MS measurements using HILIC conditions resulted in separations with better sensitivity.