In 2012, POSIVA selected a bentonite-based (montmorillonite) block/pellet as the backfilling solution for the deposition tunnel in the application for a construction license for the deep geological repository of high-level radioactive waste in Finland. However, in the license application (i.e. SC-OLA) for the operation submitted to the Finnish Government in 2021, the design for backfilling was changed to a granular mixture consisting of bentonite (smectite) pellets crushed to various sizes, based on NAGRA’s buffer solution. In this study, as part of the preliminary design of the deep geological repository system in Korea, we reviewed history and its rationale for the design change of Finland’s deposition tunnel backfilling solution. After the construction license was granted by the Finnish Government in 2015, POSIVA conducted various lab- and full-scale in-situ tests to evaluate the producibility and performance of two design alternatives (i.e. block/pellet type and granular type) for backfilling. Principal demonstration tests and their results are summarized as follows: (a) Manufacturing of blocks using three types of materials (Friedland, IBeco RWC, and MX-80): Cracking and jointing under higher pressing loads were found. Despite adjusting the pressing process, similar phenomena were observed. (b) 1:6 scale experiment: Confirmation of density difference inhomogeneity due to the swelling of block/pellet backfill and void filling due to swelling behavior into the mass loss area of block/pellet. (c) FISST (Full-Scale In situ system Test): Identification of technical unfeasibility due to the inefficient (too manual) installation process of blocks/pellets and development of an efficient granular in-situ backfilling solution to resolve the disadvantage. (d) LUCOEX-FE (Large Underground Concept Experiments – Full-scale Emplacement) experiment: Confirmation of dense/homogeneous constructability and performance of granular backfilling solution. In conclusion, the simplified granular backfill system is more feasible compared to the block/ pellet system from the perspective of handling, production, installation, performance, and quality control. It is presumed that various experimental and engineering researches should be preceded reflecting specific disposal conditions even though these results are expected to be applied as key data and/or insights for selecting the backfilling solution in the domestic deep geological repository.
The nuclear criticality analyses considering burnup credit were performed for a spent nuclear fuel (SNF) disposal cell consisting of bentonite buffer and two different types of SNF disposal canister: the KBS-3 canister and small standardized transportation, aging and disposal (STAD) canister. Firstly, the KBS-3 & STAD canister containing four SNFs of the initial enrichment of 4.0wt% 235U and discharge burnup of 45,000 MWD/MTU were modelled. The keff values for the cooling times of 40, 50, and 60 years of SNFs were calculated to be 0.79108, 0.78803, and 0.78484 & 0.76149, 0.75683, and 0.75444, respectively. Secondly, the KBS-3 & STAD canister with four SNFs of 4.5wt% and 55,000 MWD/MTU were modelled. The keff values for the cooling times of 40, 50, and 60 years were 0.78067, 0.77581, and 0.77335 & 0.75024, 0.74647, and 0.74420, respectively. Therefore, all cases met the performance criterion with respect to the keff value, 0.95. The STAD canister had the lower keff values than KBS-3. The neutron absorber plates in the STAD canister significantly affected the reduction in keff values although the distance among the SNFs in the STAD canister was considerably shorter than that in the KBS-3 canister.
Technology for high-level-waste disposal employing a multibarrier concept using engineered and natural barrier in stable bedrock at 300–1,000 m depth is being commercialized as a safe, long-term isolation method for high-level waste, including spent nuclear fuel. Managing heat generated from waste is important for improving disposal efficiency; thus, research on efficient heat management is required. In this study, thermal management methods to maximize disposal efficiency in terms of the disposal area required were developed. They efficiently use the land in an environment, such as Korea, where the land area is small and the amount of waste is large. The thermal effects of engineered barriers and natural barriers in a high-level waste disposal repository were analyzed. The research status of thermal management for the main bedrocks of the repository, such as crystalline, clay, salt, and other rocks, were reviewed. Based on a characteristics analysis of various heat management approaches, the spent nuclear fuel cooling time, buffer bentonite thermal conductivity, and disposal container size were chosen as efficient heat management methods applicable in Korea. For each method, thermal analyses of the disposal repository were performed. Based on the results, the disposal efficiency was evaluated preliminarily. Necessary future research is suggested.
In Korea, research on the development of safety case, including the safety assessment of disposal facility for the spent nuclear fuel, is being conducted for long-term management planning. The safety assessment procedure on disposal facility for the spent nuclear fuel heavily involves creating scenarios in which radioactive materials from the repository reach the human biosphere by combining Features, Events and Processes (FEP) that describe processes or events occurring around the disposal area. Meanwhile, the general guidelines provided by the IAEA or top-tier regulatory requirements addressed by each country do not mention detailed methods of ‘how to develop scenarios by combining individual FEPs’. For this reason, the overall frameworks of developing scenarios are almost similar, but their details are quite different depending on situation. Therefore, in order to follow up and clearly analyze the methods of how to develop scenarios, it is necessary to understand and compare case studies performed by each institution. In the previous companion paper entitled ‘Research Status and Trends’, the characteristics and advantages/disadvantages of representative scenario development methods were described. In this paper, which is a next series of the companion papers, we investigate and review with a focus on details of scenario development methods officially documented. In particular, we summarize some cases for the most commonly utilized methods, which are categorized as the ‘systematic method’, and this method is addressed by Process Influence Diagram (PID) and Rock Engineering System (RES). The lessons-learned and insight of these approaches can be used to develop the scenarios for enhanced Korean disposal facility for the spent nuclear fuel in the future.
The criticality analyses considering burnup credit were performed for a spent nuclear fuel (SNF) disposal cell consisting of bentonite buffer and two different types of PWR SNF disposal canister: the KBS-3 type canister and the small standardized transportation, aging and disposal (STAD) canister. The criticality analyses were carried out for four cases as follows: (1) the calculation of isotopic compositions within a SNF using a depletion assessment code and (2) the calculation of the effective multiplication factor (keff) value using a criticality assessment code. Firstly, the KBS-3 type canister containing four SNFs of the initial enrichment of 4.0wt% 235U and discharge burnup of 45,000 MWD/MTU was modelled. The keff values for the cooling times of 40, 50, and 60 years of SNFs were calculated to be 0.74407, 0.74102, and 0.73783, respectively. Secondly, the STAD canister was modelled. The SNFs contained in the STAD canister were assumed to be the enrichment of 4.0wt% and the burnup of 45,000 MWD/MTU. The keff values for the cooling times of 40, 50, and 60 years were estimated to be 0.71448, 0.70982, and 0.70743, respectively. Thirdly, the KBS-3 canister with four SNFs of which the enrichment was 4.5wt% and the burnup was 55,000 MWD/MTU was modelled. The keff values for the cooling times of 40, 50, and 60 years were 0.73366, 0.72880, and 0.72634, respectively. Finally, the calculations were carried out for the STAD canister containing four SNFs of the enrichment of 4.5wt% and the burnup of 55,000 MWD/MTU. The keff values for the cooling times of 40, 50, and 60 years were 0.70323, 0.69946, and 0.69719, respectively. Therefore, all of four cases met the performance target with respect to the keff values, 0.95. The STAD canister showed lower keff values than the KBS-3 canister. This appears to be the neutron absorber plate installed in the STAD canister although the distance among the four SNFs in the STAD canister was shorter than the KBS-3 canister.