일반적으로 도로 포장체의 파손은 다양한 요소에 영향을 받는 것으로 알려져 있다. 그 중 가장 주된 포장체 파손형태로서 영구변형(permanent deformation)과 피로균열(fatigue crack)을 들 수 있으며 이들은 포장체의 공용수명을 단축시키는 주요원인이 된다. 도로 포장체의 영구변형을 정확히 예측하는 것은 도로포장체의 내구성을 파악하여 이를 기반으로 포장을 설계하는 포장설계법의 수립에 있어 매우 중요하다. 포장하부구조의 재료거동은 본질적으로 전단강도(τmax)와 밀접한 연관성을 가지므로 포장하부구조 내 발생한 전단응력τ의 전단강도에 대한 발생비를 고려하여 영구변형 모델을 설정할 필요가 대두되고 있다. 이에 본 연구에서는 이와 같은 전단응력비 개념을 도입한 대형반복삼축압축시험을 통하여 도로하부 재료 중 국내에서 사용되는 대표적인 입상의 보조기층 재료에 대한 영구변형 특성을 알아보았으며 이를 기초로 영구변형 모델의 수립에 필요한 모델 매개변수를 시험을 통해 새롭게 제안하고자 하였다.
본 연구는 아스팔트 혼합물의 변형강도에 대한 적정 하중재하속도를 선정하기 위하여 수행하였다. 이를 위하석 직경(D) 40mm, 하단의 원형 절삭반경(r)을 10.0mm의 하중봉으로 Kim test의 하중재하속도를 분당 10mm, 30mm, 50mm, 70mm로 하여 변형강도를 측정하고 반복주행시험을 수행하여 얻어진 소성변형 특성치와의 상관관계에 대하여 회귀분석을 수행하였다. 하중재하속도별 변형강도 값은 하중재하속도가 증가함에 따라 변형강도도 증가하는 경향을 보였다. 이것은 하중재하속도가 변형강도에 미치는 영향이 큰 요소임을 알 수 있었다. 하중재하속도에 따른 변형강도와 반복주행시험 결과인 최종침하깊이 및 동적안정도와의 상관성 분석을 통해 30mm/min의 하중재하속도가 가장 적합한 것으로 나타났다. 하중 30mm/min 하중재하속도가 불가능한 시험기의 30mm/min 하중재하속도에서의 변형강도는 제안된 환산계수를 적용해야 한다.
하부구조 안정처리 기법은 도로포장의 공용성을 증대시킬 뿐만 아니라 상부 포장층의 두께 절감할 수 있는 효과가 있다. 하부구조의 지반재료에 적절한 종류의 안정제를 배합함으로써 새로운 형태의 공학적인 지반재료를 구성하여 구조적 및 경제적으로 효과적인 층 구조를 형성하게 할 수 있다. 기존에는 안정처리기법을 경험에 근거하여 적용하여 왔으며 또한 설계시 본 기법을 적용할 수 있는 기준이 정립되어 있지 않다. 본 논문의 목적은 도로하부 지반재료에 적용을 위한 안정처리제의 역학적 특성을 평가하여 최적의 함량을 결정하고자 한다. 국내 포장하부구조의 대부분을 차지하고 있는 조립질 지반을 선정하여 안정제 혼합시 강도 및 변형특성을 일축압축실험과 반복재하식 회복변형계수 실내실험을 통하여 각각 알아보았다. 일축압축 실험결과, 안정제를 사용한 안정처리방법의 효과가 입도조정 안정처리 기법에 비하여 약 10배 이상의 일축압축강도가 증가 하는 것으로 나타났다. 또한 안정처리시 회복변형계수는 원시료와 비교하여 약 6×10배 이상 증가하며, 체적응력과 축차응력 그리고 안정제의 함량이 커질수록 증가하는 경향을 나타내었다.
본 연구에서는 아스팔트 혼합물의 변형강도시험에서 하중봉의 치수가 변형강도 특성에 미치는 영향을 평가하였다. 이를 위하여 직경(D) 40mm, 하단의 원형 절삭 반경(r)을 10.0mm와 10.5mm로 제작한 두 개의 하중봉으로 아스팔트 혼합물의 변형강도를 측정하고, 반복주행시험을 수행하여 얻어진 소성변형 특성치와 상관성 분석을 하였다. 또한 하중봉의 원형 절삭반경에 따른 골재치수에 어떠한 영향을 미치는지를 확인하기 위하여 통계 분석을 하였다. 변형강도 값과 변동계수는 r=10mm하중봉을 사용한 것이 더 낮은 것으로 나타났다. 또한 r=10mm 하중봉이 변형강도와 소성변형 특성치와 상관성 분석에서도 더 높은 상관성을 보였다. 골재치수와 원형 절삭반경은 변형강도에 영향을 미치는 것으로 나타났으나 두 변수의 교호작용에서는 골재의 크기가 10mm~19mm내에서는 r에 영향을 받지 않는 것으로 나타났다. 따라서 소성변형과의 상관성이 더 우수하며 변동계수도 낮은 것으로 나타난 D=40mm, r=10.0mm의 하중봉을 사용하는 것이 적합할 것으로 판단되었다.
아스팔트 바인더 Stiffness와 혼합물의 변형강도 및 동적크리프 특성과의 상관성 분석을 토대로 혼합물의 소성변형 저항성 (내변형성) 추정을 위한 Kim test의 적용성을 고찰하였다. 본 연구는 골재 2종류, AC 60-80 및 이를 개질한 총 8종류의 바인더로 총 16가지 혼합물을 제조하였다. DSR로 각 바인더의 G*/sineδ를 측정하였으며 Kim test의 변형강도와 동적크리프 시험의 최종변위(FD)와 동적안정도(DS)를 각 혼합물로부터 측정하였다. 바인더의 G*/sineδ와 소성변형 관련 3가지 특성(SD. FD, DS)과의 상관성 분석 결과 G*/sineδ와 SD와 상관성이 가장 높은 것으로 나타났다 (R2=0.88) 이는 혼합물에 내재해 있는 내변형성의 차이를 Kim test가 더 잘 구분해 낼 수 있음을 의미한다. 또한 DS와 SD의 회귀분석 결과, R2이 약 0.84 이상을 보여 변형강도는 동적크리프 시험의 동적안정도와 좋은 상관성을 가짐을 확인하였다. 따라서 본 연구를 통하여 아스팔트 혼합물의 내변형성 평가시 Kim test의 활용 가능성이 매우 높음을 확인하였다.
본 연구는 아스팔트 콘크리트 포장의 소성변형 추정을 보다 쉽게 하기 위하여 새로운 시험기법인 김테스트의 변형강도 및 시험 장비를 개발함에 있어 적정규격을 선정하기 위한 것이나. 김테스트에서 하중봉의 직경(D) 및 하중봉 하단의 원형처리 반경(r)이 시험결과에 미치는 영향을 파악하기 위하여 다양한 혼합물에 대하여 D와 r을 변화시켜가며 실험을 수행하였다. r에 따른 변형강도 및 변형하중과의 상관관계 분석결과 r=0.5와 1.0cm로 원형 처리한 측정값에서 소성변형과 높은 상관성을 보여주었다. 공시체의 직경(S)은 중요 변인이 아니었으며, 하중봉은 직경 4cm에 반드시 하단을 원형처리를 해야하고 이때의 절삭 반경 r은 1.0cm가 가장 좋은 것으로 나타났다. 통계프로그램 SAS의 STEPWISE 를 이용하여 골재별로 변형강도로부터 소성변형 깊이 및 동적 안정도를 추정하기 위해 모델을 개발하였으며 $R^2$은 0.95이상이 얻어졌다. 향후 보다 많은 실험을 통해 이 시험법의 표준화 연구가 지속적으로 이루어져야 할 것이며, 새로운 배합설계 방법을 개발한다면 본 실험법의 적용을 검토해 볼 필요가 있을 것이다.
본 연구는 아스팔트 콘크리트 포장의 소성변형 추정을 보다 쉽게 하기 위하여 새로운 시험기법인 김테스트의 변형강도 및 시험 장비를 개발함에 있어 적정규격을 선정하기 위한 것이나. 김테스트에서 하중봉의 직경(D) 및 하중봉 하단의 원형처리 반경(r)이 시험결과에 미치는 영향을 파악하기 위하여 다양한 혼합물에 대하여 D와 r을 변화시켜가며 실험을 수행하였다. r에 따른 변형강도 및 변형하중과의 상관관계 분석결과 r=0.5와 1.0cm로 원형 처리한 측정값에서 소성변형과 높은 상관성을 보여주었다. 공시체의 직경(S)은 중요 변인이 아니었으며, 하중봉은 직경 4cm에 반드시 하단을 원형처리를 해야하고 이때의 절삭 반경 r은 1.0cm가 가장 좋은 것으로 나타났다. 통계프로그램 SAS의 STEPWISE 를 이용하여 골재별로 변형강도로부터 소성변형 깊이 및 동적 안정도를 추정하기 위해 모델을 개발하였으며 R2은 0.95이상이 얻어졌다. 향후 보다 많은 실험을 통해 이 시험법의 표준화 연구가 지속적으로 이루어져야 할 것이며, 새로운 배합설계 방법을 개발한다면 본 실험법의 적용을 검토해 볼 필요가 있을 것이다.
취성재료인 탄소섬유보강폴리머(CFRP)의 시편시험에서 총변형량과 유효길이로서 유도되는 환산변형률을 도입하고, 환산변형률의 장점을 기술하였다. 일반적으로 재료의 인장물성을 결정하기 위해 스트레인 게이지 측정값을 사용하지만, 취성특성을 가지는 CFRP에서는 항상 유효한 것은 아니다. 그 이유는 취성재료에서는 응력재분배를 할 수 없으며, 스트레인 게이지의 측정값은 국부거동만을 나타기 때문이다. 따라서 환산변형률은 취성재료의 인장인장특성의 평균값을 측정하고 변형률과 측정값을 검증하는 보조지표로서 효과적으로 사용될 수 있다. 또한 환산변형률은 1) 제작 오차(편차) 와 세팅 오차(정렬 불량)에 의해 발생하는 초기 내부 변형률에 기인한 영향과 2) 불균일 변형분포로 인한 부분파단 이후 거동을 명확히 가시화하는 장점이 있다.