Interim dry cask storage systems comprising AISI 304 or 316 stainless steel canisters have become critical for the storage of spent nuclear fuel from light water reactors in the Republic of Korea. However, the combination of microstructural sensitization, residual tensile stress, and corrosive environments can induce chloride-induced stress corrosion cracking (CISCC) for stainless steel canisters. Suppressing one or more of these three variables can effectively mitigate CISCC initiation or propagation. Surface-modification technologies, such as surface peening and burnishing, focus on relieving residual tensile stress by introducing compressive stress to near-surface regions of materials. Overlay coating methods such as cold spray can serve as a barrier between the environment and the canister, while also inducing compressive stress similar to surface peening. This approach can both mitigate CISCC initiation and facilitate CISCC repair. Surface-painting methods can also be used to isolate materials from external corrosive environments. However, environmental variables, such as relative humidity, composition of surface deposits, and pH can affect the CISCC behavior. Therefore, in addition to research on surface modification and coating technologies, site-specific environmental investigations of various nuclear power plants are required.
A transfer cask serves as the container for transporting and handling canisters loaded with spent nuclear fuels from light water reactors. This study focuses on a cylindrical transfer cask, standing at 5,300 mm with an external diameter of 2,170 mm, featuring impact limiters on the top and bottom sides. The base of the cask body has an openable/closable lid for loading canisters with storage modules. The transfer cask houses a canister containing spent nuclear fuels from lightweight reactors, serving as the confinement boundary while the cask itself lacks the confinement structure. The objective of this study was to conduct a structural analysis evaluation of the transfer cask, currently under development in Korea, ensuring its safety. This evaluation encompasses analyses of loads under normal, off-normal, and accident conditions, adhering to NUREG-2215. Structural integrity was assessed by comparing combined results for each load against stress limits. The results confirm that the transfer cask meets stress limits across normal, off-normal, and accident conditions, establishing its structural safety.
Concrete structures of spent nuclear fuel interim storage facility should maintain their ability to shield and structural integrity during normal, off-normal and accident conditions. The concrete structures may deteriorate if the interim storage facility operates for more than several decades. Even if deterioration occurs, the concrete structures must maintain their own functions such as radiation shielding protection and structural integrity. Therefore, it is necessary to establish an analysis methodology that can evaluate whether the deteriorated concrete structure maintains its integrity under not only normal or off-normal condition but also accident condition. In this study, dynamic material testing was conducted on concrete cores extracted from HANARO exterior wall during seismic reinforcement construction. HANARO was constructed at the Korea Atomic Energy Research Institute in 1995, following strict nuclear quality assurance standards. In order to conduct the dynamic material testing of the extracted concrete cores, self-disposal had to be performed because the concrete cores were extracted and stored in a radiation controlled area. A self-disposal application was prepared and submitted based on the radionuclide analysis results, and it was finally approved in April 2023. Then, a test was performed by processing a specimen for dynamic property testing using a self-disposed concrete core. The concrete cores were processed to create specimens for dynamic material testing and the dynamic material testing was performed to obtain stress-strain diagrams according to the strain rate.
Concrete structures of spent nuclear fuel interim storage facility should maintain their ability to shield and structural integrity during normal, off-normal and accident conditions. The concrete structures may deteriorate if the interim storage facility operates for more than several decades. Even if deterioration occurs, the concrete structures must maintain their own functions such as radiation shielding protection and structural integrity. Therefore, it is necessary to establish an analysis methodology that can evaluate whether the deteriorated concrete structure maintains its integrity under not only normal or off-normal condition but also accident condition. In accident conditions such as tip over and aircraft collision, both static material properties and dynamic properties are needed to evaluate the structural integrity of the concrete structures. Especially, it has been known to be difficult to estimate the resulted damage precisely where an aircraft collides with the degraded concrete structures at a high strain rate. In this study, damage evaluation of concrete overpack due to aircraft collisions was conducted. First, in order to verify the impact analysis methodology, the aircraft impact analysis of plane concrete overpack was performed and compared with the test results previously conducted by our research team. Then, the impact analysis for the overpack of KORAD21C was performed. In the future, the radiation shielding analysis will be performed under the conditions to evaluate whether or not the radiation shielding ability is maintained.
Concrete structures of spent nuclear fuel interim storage facility should maintain their shielding ability and structural integrity during normal, off-normal and accident conditions. The concrete structures may deteriorate if the interim storage facility operates for more than several decades. Even if deterioration occurs, the concrete structures must maintain its unique functions (shielding and structural integrity). Therefore, it is necessary to establish an analysis methodology that can evaluate whether the deteriorated concrete structure maintains its integrity under not only normal or off-normal condition but also accident condition. In accident conditions such as tip over and aircraft collision, both static material properties and dynamic properties of the concrete are required to evaluate the structural integrity of the concrete structures. Unlike the calculated damage results for the static deformation of the concrete structure, it is very difficult to accurately estimate the damage values of the degraded concrete structures where an aircraft collides at a high strain rate. Therefore, the present authors have a plan to establish a database of the dynamic material properties of deteriorated concrete and implement to a Finite Element Analysis model. Prior to that, dynamic increase factors described in a few technical specifications were investigated. The dynamic increase factor represents the ratio of the dynamic to static strength and is normally reported as function of strain rate. In ACI-349, only the strain rate is used as a variable in the empirical formula obtained from the test results of specified concrete strengths of 28 to 42 MPa. The maximum value of dynamic increase factor is limited to 1.25 in the axial direction and 1.10 in the shear direction. On the other hand, in the case of the CEB model, static strength is included as variables in addition to the strain rate, and a constitutive equation in which the slope changes from the strain rate of 30 /s is proposed. As plotting the two dynamic increase factor models, in the case of ACI, it is drawn as a single line, but in the case of CEB, it is plotted as multiple lines depending on the static strength. The test methods and specimen sizes of the previously performed tests, which measured the concrete dynamic properties, were also investigated. When the strain rate is less than 10 /s, hydraulic or drop hammer machines were generally used and the length of the specimens was more than twice the diameter in most cases. However, in the case of Split Hopkinson Pressure Bar tests, the small size specimens are preferred to minimize the inertia effect, so the specimens were small and the length was less than twice the diameter. We will construct the dynamic properties DB with our planned deteriorate concrete specimen test, and also include the dynamic property data already built in the previous studies.