검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2013.04 서비스 종료(열람 제한)
        In this study, based on the field and laboratory experiments results of underground box culverts, a residual service life was numerically estimated via the statistical analysis and Monte Carlo simulation.
        2.
        2012.11 서비스 종료(열람 제한)
        This study is to propose a more reasonable durability prediction models about compression strength and carbonation of Seoul Metro. The Seoul Metro has been used more than 30 years and accumulated many diagnosis data for about fifteen years. As a result of the analysis of compressive strength and carbonation, we were able to draw prediction models with accuracy of more than 80% and confirmed the prediction model's reliability by comparing it with the existing models. We've also confirmed field suitability of the prediction models by applying field, the average error of an estimate on compressive strength and carbonation depth was about 20%, which showed an accuracy of more than 80%.
        3.
        2012.09 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 콘크리트 구조물의 합리적인 압축강도 및 탄산화 예측식을 제안하고, 이 제안식의 현장적용을 통한 보다 효율적인 터널 진단 및 유지관리 기법을 개발하였다. 이를 위하여 공용연수가 약 30년 이상 경과하였으며, 약 15년 동안 수회에 걸친 진단 및 점검으로 무수히 많은 현장 내구성 측정 데이터가 축적된 서울메트로를 대상 시설물로 선정하였다. 압축강도 및 탄산화 분석결과 80% 이상의 정확도를 확보하는 각각의 예측식을 도출하였으며, 기존 제안식과의 비교분석을 통하여 본 연구 제안식의 신뢰도를 확인하였다. 또한 제안식의 현장적용 결과 압축강도 및 탄산화 깊이에 대한 예측치의 평균오차율이 약 20%내외로서 80% 이상의 높은 정확도를 확보하는 것으로 분석되어 현장적용의 적합성을 확인하였다. 현장조사 전 내구성 예측 맵(Map)을 활용한 효율적인 유지관리 기법을 개발하였다. 예측 맵(Map) 활용 시 진단기술자 및 시설물 담당자는 설계기준강도에 미달되거나 탄산화로 철근부식 가능성이 높은 취약부위를 한 눈에 파악할 수 있으므로 일일이 조사를 수행하는 과정에서 취약부위를 도출해야 하는 현 조사기법 보다 효과적으로 터널 조사 및 유지관리를 수행할 수 있을 것으로 기대된다.
        4.
        2010.09 KCI 등재 서비스 종료(열람 제한)
        본 논문에서는 탄산화 콘크리트 구조물의 내구성을 예측하기 위한 새로운 접근 방법을 제시하였다. 제시된 예측 방법은, 새로운 계측 데이터가 있을 때 베이스 이론에 근거하여 지속적인 업데이팅이 가능하며 모델 매개변수의 확률론적인 특성이 고려된다. 탄산화 내구성 해석 모델의 절차는 라틴 하이퍼큐브 샘플 추출법(LHS)으로 간단하게 정리되고, 이를 통해 얻는 표본으로 결정된다. 이 방법은 콘크리트 구조물의 설계에 유용하게 사용될 수 있으며, 모니터링을 통한 콘크리트 구조물의 잔존수명을 예측할 수 있다. 본 논문에서 사전예측치는 탄산화에 노출된 국내 콘크리트 구조물 데이터(3700개 시편)를 이용하여 콘크리트 탄산계수의 확률 특성을 고려하여 나타내었으며, 우도함수는 현장 모니터링 데이터를 이용하였으며 사후예측치는 사전예측치와 우도함수를 조합하여 나타내었다. 또한, 몬테 카를로 시뮬레이션(MCS)과 LHS의 비교를 통하여 본 논문에서 수행된 LHS를 이용한 샘플링기법이 보다 효율적인 시뮬레이션 수행이 가능함을 확인하였다.