The cast iron pipe protection of submarine cables has a bump in the connection, so the guide device for checking the position and location of the submarine cable must pass through the curved surface. Since the connection is present at a regular intervals, impact loads are periodically applied, affecting the durability of the guide device. In this study, the design was changed to improve the durability of guide device links. And for the analysis of the durability for link of guide device, the flexible dynamic analysis of the guide device was performed using MSC.Adams, and the dynamic stress acting on the link was calculated using MSR(Modal Stress Recovery) method. As a result, the dynamic stress is reduced by 17.9%~31.1%. In addition, durability was calculated for the initial model and the improved model. As a result, the durability of the new model was improved more than 200 % better than to the initial model.
In this paper, the boom of a 30m class refracted insulation with outrigger on aerial elevating work platform is modeled as 3D CAD program of CATIA. The static and dynamic analyses are performed by using ANSYS and ADAMS programs, respectively. The refracted insulation boom uses acetal and the composite boom for insulation. And the composite insulation boom is modeled by using ACP (Ansys Composite Prepost) of ANSYS program. In order to analyze the durability of refracted insulation boom, the static analysis is performed and each analyzed part is stored as =MNF-type flexible body model. The dynamic analysis is performed with ADAMS by using the flexible model. As the result, these analyzes clarify the structural stability and dynamic durability (hot spot) of the refracted insulation boom.