본 연구는 급속하게 성장하는 시설농업과 동시에 증가하는 에너지 사용량 및 탄소배출량을 저감하기 위해, 온실의 에너 지 부하를 동적으로 분석하기 위한 작물에너지의 다중 회귀 모델 개발을 수행하였다. 온실은 연중 안정적인 대량 생산을 위한 적절한 환경을 조성하기 위해 에너지 투입이 필요하다. 도시농업의 일종인 옥상온실 플랫폼을 통해 건물에서 버려지 거나 활용되지 않는 에너지를 옥상온실에서 사용할 수 있다. 옥상온실의 효율적인 운영을 위해서는 다양한 환경 조건에 대 한 동적 에너지 분석이 선행되어야 하며, 온실에 도입되는 태 양 에너지의 40-75%가 작물을 위한 에너지 교환이므로 필수적으로 고려되어야 한다. 한국기계연구원 내 옥상온실에서 여름철에 청경채를 재배하며 생장단계에 따른 에너지 교환을 분석하였다. 작물을 중심으로 미기상 및 양액 환경 분석과 생 장 특성 조사를 수행하였다. 정식일수에 따른 엽면적지수를 추정하였으며, 개발된 수식은 결정계수 0.99로 분석되었다. 또한 작물에너지 흐름에 지배적인 잎 표면온도로부터의 현열 부하와 증발산에 의한 잠열부하로 나누어 모델을 개발하였다. 엽온과 증발산량을 각각 다중 회귀모델을 이용하여 추정하고 실측한 값을 비교해 보았을 때, 평균 결정계수 0.95, 0.71로 분 석되었으며, 이 모델을 이용하여 옥상온실의 에너지 부하를 동적으로 산정하기 위한 모델에 입력값으로 사용할 수 있을 것으로 판단된다.
The quality of silages, made from whole crop barley, rye, spring oat, Italian ryeglass, orchardgrass, alfalfa and grass-legume pasture mixtures, were evaluated under two different conservation techniques in baled silage making (BS) and conventional silage
고유가 및 국제적 환경규제 강화와 더불어 우리나라는 2013년 온실가스 감축 의무대상국으로의 편입이 가시화되고 있다. 따라서 농업분야의 신재생에너지 사업기반 마련을 위해 가축분뇨를 비롯한 농축산바이오매스의 혐기성소화 방식을 통한 바이오가스 생산 및 에너지화 기술 개발의 필요성이 증대되고 있다. 또한 농업부문의 급속한 시장개방으로 외국산 축산물의 수입이 본격화됨에 따라 국내 축산업의 경쟁력 제고와 축산업 과정에서 필연적으로 발생하는 가축분뇨의 해양배출 금지에 대비한 육상처리시설 기반 확보가 필요하다. 가축분뇨 및 농축산바이오매스의 혐기성소화 기술 적용은 장래 해양배출 금지에 따른 처리시설 기반확보와 동시에 온실가스를 저감하는 환경적 기능, 메탄가스와 같은 재생에너지 생산 그리고 소화슬러지는 퇴・액비화 후 양질의 유기질 비료로 활용하는 등 자원순환 기능을 동시에 달성할 수 있다. 이에 본 연구에서는 다양한 가축분뇨 및 농축산 바이오매스를 대상으로 회분식 혐기성소화 실험을 통해 각 연구대상 통합시료의 분해속도 및 생분해 특성을 평가하고, 가축분뇨 및 농축산바이오매스의 혐기성통합소화 플랜트 설계 기초자료를 제시하고자 하였다. 혐기성 통합 소화 대상 농축산바이오매스는 동계사료작물 청보리, 하계사료작물 사료용 옥수수, 가축분뇨는 우분을 연구대상으로 하였다. 가축분뇨와 Energy Crop의 혼합비는 VS기준으로 60 : 40이었으며, 식종균은 D시의 하수처리장의 중온혐기성소화균을 채취하여 순응적응시켜 이용하였다. 최종생분해도평가는 Graphical Statistic Analysis Method와 BMP Test를 적용하였다. 실험기간 120일동안 우분의 최종생분해도는 72~73%이었으며 가축분뇨와 사료작물의 혼합비 60:40 조건에서 우분+옥수수 통합시료는 83~85%, 우분+청보리 통합시료는 80%의 최종생분해도를 나타내었다. 우분의 전체 생분해성 유기물 중 빠르게 분해되는 분율(S1)은 78%으로 k1(0.087day-1)의 속도로 25일 안에 빠르게 분해하였으며, 느리게 분해되는 S2 분율은 22%로써 k2(0.004day-1)의 속도로 95일의 긴 시간동안 분해하였다. 우분+사료용 옥수수 통합시료(혼합비 60:40)의 S1은 25일 동안 BVS 중 80%가 0.090day-1(k1)의 속도로 빠르게 분해하였으며, S2는 95일 동안 k2, 0.004day-1의 속도로 BVS의 20%가 분해되었다. 우분+청보리 통합시료(혼합비 60:40)의 S1은 30일 동안 BVS 중 76%가 0.069day-1(k1)의 속도로 빠르게 분해하였으며, S2는 90일 동안 k2, 0.009day-1의 속도로 BVS의 24%가 분해되었다.
억새 수집종의 초장 길이를 조사한 결과, 개화 전과 후 전체 생육기간 동안 200 cm 이상 우량한 생육을 나타낸 개체 자원은 India에서 수집한 억새 MS013이며, 개화 후에는 MS005, MS010, MS011, MS014 억새도 200 cm 이상의 생육을 보여주었다. 대부분의 억새 수집종의 경우 분얼수가 2-3개 정도로 나타났다. 엽장의 길이가 100 cm 이상인 수집종은 MS001, MS002, MS005, MS012, MS013, MS014로 6종이며, 엽폭은 1-2 cm 사이가 63%이상으로 대부분의 수집종들이 이에 속하였으며, MS002, MS003, MS005 억새의 엽폭은 2 cm 이상으로 잎이 넓은 것을 확인할 수 있었다. MS005 억새는 초장, 간경, 마디수, 분얼수 뿐만 아니라, 엽장, 엽폭에 있어서도 다른 지역에서 수집한 억새보다 수치가 높은 것을 확인하였으며 바이오에너지용 억새로서의 가치가 있다고 사료된다.
열대작물인 자트로파의 염과 가뭄 스트레스에 따른 생리적 반응과 유전자 발현의 연구를 통해 바이오에너지 작물로서의 기초적 자료를 얻고자 본 실험을 수행하였다. 1. 100~cdot200~cdot300 mM NaCl의 염 스트레스와 5~cdot10~cdot20~cdot30 % PEG의 가뭄 스트레스를 처리하여 잎의 생장, 기공의 전도도, 엽록소 형광, 전해질 유출량을 조사하였다. 자트로파의 잎의 생장, 기공의 전도도, 엽록소 형광, 전해질 유출량을 통한 생육조사 결과 가뭄 스트레스 보다 염 스트레스에서 더 많은 피해를 입었다. 2. 수분 수송과 관련된 아쿠아포린 중에서 JcPIP2가 뿌리, 줄기, 떡잎 그리고 잎에서 모두 고르게 발현하고 있음을 확인하였다. 잎의 JcPIP2는 대조구와 가뭄 스트레스 처리구에서 모두 발현하는 반면, 200 300 mM NaCl 처리구에서는 잎에서 발현하지 않았다. 3. 염과 가뭄 스트레스에서 JcPIP2가 상반되는 반응을 보이는 것은 JcPIP2가 염 스트레스 관련 주요 내재 단백질과 같은 기능을 하는 것으로 판단된다. 4. 자트로파는 염 스트레스보다 가뭄 스트레스에 더 내성을 보이므로 간척지보다는 가뭄지역에서 재배하는 것이 더 유리할 것으로 보인다.
1. 수수 성숙기에 간장 길이를 조사한 결과 6개체(12.2%) 가 300 cm 이상의 길이로 바이오매스가 우량한 것으로 파악되었으며, 10개체(20.4%)정도는 200~300 cm 사이의 평균 길이를 나타내었다. 2. 성숙기의 수수 줄기 직경에는 큰 차이를 보여준 개체는 없었으며, 대부분의 수수 수집종들은 2.2±0.1 cm 정도의 직경을 갖는 것으로 드러났다. 3. 본 연구에 시험한 수수 수집종들은 엽장이 60~70 cm 정도의 길이에 속하는 유전자원이 22 개체가 되는 것으로 나타났으며, 7개체는 70 cm 이상되는 것으로 나타났다. 4. 엽형은 49% 정도의 개체가 협단으로 분류되었고, 대부분의 엽맥색은 백색으로 나타났다. 5. 본 연구에 사용된 대부분의 수수의 수형은 반밀수 타원형이 많은 것으로 나타났으며, 수장은 평균적으로 20~30 cm에 달하는 것으로 나타났다.