PURPOSES: The purpose of this study is to analyze the characteristics of the weight values of evaluation items by traffic safety project type.
METHODS: In general, a large-scale investment in projects such as the traffic safety project requires economic analyses to be performed in advance. However, there is an argument for considering special characteristics of the traffic safety project. Therefore, this study conducted characteristic analysis of the weight values of evaluation items. The analysis consisted of two steps. The first step was hypothesis verification using analysis of variance (ANOVA). In this process, the authors examined whether the weight of evaluation items is the same regardless of the traffic safety project type. Based on the first step's results, the authors proceeded to the second step. The objective of this step was to analyze how different the weight values are by traffic safety project type using an analytic hierarchy process.
RESULTS: According to the ANOVA test results, the benefit to cost ratios have different weight values based on traffic safety project type at the 0.01 significance level. The policy evaluation items, such as the plans connection, resident opinion, and regional equity, also showed the same results except that the result for the related plans connection was statistically significant at the 0.05 level. Based on the first step's result, the AHP analysis in the second step showed that the traffic safety projects for vulnerable users and pedestrians have very low weight values in economic evaluation factors compared with other safety project types. The weight values for vulnerable users and pedestrians were 0.29 and 0.26, respectively, in economic evaluation items. On the other hand, the weight values for other safety project types were around 0.6. Among the policy evaluation items, resident opinion showed a higher weight value than other factors, such as connection and regional equity items.
CONCLUSIONS: The social and economic impact of a traffic safety project varies by project type and project characteristics. Although the economic approach is overarching and a reasonable methodology is applied for large-scale projects, it should be noted that the safety issue, especially for transportation of vulnerable uses, requires a non-economical approach. Based on the analysis results, this study suggests that the priority of the projects should be determined by separating them into independent assessment groups depending on their characteristics.
PURPOSES: This paper proposes a reliability index for the safety evaluation of freeway sections. It establishes a reliability index as a safety surrogate on freeways considering speeds and speed dispersions.
METHODS : We collated values of design elements including radii, curve lengths, vertical slopes (absolute values), superelevations, and vertical slopes from seven freeway sections in Korea. We also collected data about driving speeds, traffic accidents, and their deviations. We established a reliability index using these variables.
RESULTS : The average radii, curve lengths, and superelevations are highly correlated with the incidence of traffic accidents. Deviations in radius and curve lengths show an especially high correlation. The reliability index, derived from speed and speed dispersions of the seven freeway sections, also correlated highly with accidents with a correlation index of 0.63.
CONCLUSIONS : Since the reliability index obtained from speed and speed dispersions are highly correlated with traffic accidents, we conclude that a reliability index can be a safety surrogate on freeways considering speeds and speed dispersions together in terms of design and operational levels.
To evaluate the traffic safety of PSC box bridge for increasing speed 450km/h of KTX, a dynamic analysis of KTX wheel force spectrum is needed concurrently with existing design requirements. The wheel force spectrum are considered the dynamic PSC box bridge behaviors as well as KTX running movements with advanced numerical model. KTX power train is modeled one body, two bogies and four wheel axis as 38 degree of freedoms. The difference of each wheel forces are evaluated for running speed on the bridge upto the increasing target speed to propose new evaluation standards of traffic safety.