A tilted tall building is actively constructed as landmark structures around world to date. Because lateral displacement responses of a tilted tall building occurs even by its self-weight, reduction of seismic responses is very important to ensure structural safety. In this study, a smart tuned mass damper (STMD) was applied to the example tilted tall building and its seismic response control performance was investigated. The STMD was composed of magnetorheological (MR) damper and it was installed on the top floor of the example building. Control performance of the STMD mainly depends on the control algorithn. Fuzzy logic controller (FLC) was selected as a control algorithm for the STMD. Because composing fuzzy rules and tuning membership functions of FLC are difficult task, evolutionary optimization algorithm (EOA) was used to develop the FLC. After numerical simulations, it has been seen that the STMD controlled by the EOA-optimized FLC can effectively reduce seismic responses fo the tilted tall building.
This research was conducted to elucidate the optimum conditions for the antibacterial activity of konjak jelly using the evolutionary operation-factorial design technique. In the first set of experiments, concentration of a coagulation agent, soaking liquid, and temperature of water were set to 0.4%, 0.6×10-2 N, and 65℃ as a central point, respectively. The highest antibacterial activity was acquired at E21, in which the number of bacteria was 1.25 log cfu/g. Because the code of changes in the main effect was (-), it could be decided that the central point of the first set was not the optimum point. Although antibacterial activity in the second set was improved, the values of the main effect were higher than that of changes in the mean effect. The central point of third set was concentration of coagulation agent 0.8%, concentration of soaking liquid 1.0×10-2 N, and temperature of water 65℃. It was found that the antibacterial activity of central point in the third set was highest among all the tested set. Further, all the necessary conditions were appropriate to reach the optimum condition. The antibacterial activity of the central point in third set was more than 1,000 times higher than that of E11, in first set.
The purpose of this study is to improve convergence speed of topology optimization procedure using the existing ESO method and to deal with topology decision of the truss structures according to a boundary condition, such as cantilever type. At the existing ESO topology optimization procedure for the truss structures, the adjustment of member sizes according to target stress has been executed by increasing or reducing a very small value from each member size. In this case, it takes too much iteration till convergence. Accordingly, it is practically hard to obtain optimum topology for a large scale structures. For that reason, it is necessary to improve convergence speed of ESO method more effectively. During the topology decision procedure, member sizes are adjusted by calculating approximate solution for member sizes corresponding to the target stress at every step, the new member sizes are adjusted by such method are applied in FEA procedure of next step.