범용유한요소프로그램인 Abaqus의 확장유한요소법(XFEM)의 사용성 검증을 위하여 2차원 모델에 적용하여 수치해석을 수행하였다. 기존의 연구에 많이 사용되었던 응집요소(cohesive element) 모델은 균열 경로를 예측하고 요소를 삽입하여야 하는 단점 때문에 실제 균열을 모사하는데 한계가 있다. 이러한 이유로 응력의 방향성 및 특이성을 바탕으로 균열의 경로를 예측하는 확장유한요소법(XFEM)이 균열 해석에 있어서 더 발전된 방법으로 이용되어 왔다. 이번 연구에서는 균열의 경로가 자명한 2차원 모델에 사용하여 응집요소해석과 XFEM에 응집요소의 물성을 적용한 해석을 비교하고 XFEM 적용의 타당성을 확인하였다. 수치해석으로 균열 발생 직전의 응력분포 및 응력 특이성을 확인하고 실제 균열 발생경로와의 비교를 한다. 본 연구를 바탕으로 몇 가지의 한계를 극복하면 실제 복잡한 모델의 실제 균열진전해석을 수행하여 균열을 모사할 수 있을 것으로 기대된다.
최근에 요소망의 재구성이 불필요하고 균열의 가시화에 강점을 가지는 확장유한요소법(XFEM)을 이용한 균열 해석이 많이 연구되고 있지만 주로 단일재료로 이루어진 부재의 해석에 집중되어 있다. 본 논문에서는 복합재료 부재인 철근콘크리트보의 다중균열 해석에 확장유한요소법을 적용하며 그 적용성과 타당성을 살펴보았다. 확장유한요소해석 기능이 탑재된 상용해석프로그램인 ABAQUS를 사용하여 균열해석을 수행하였으며 그 결과를 실험결과와 비교하였다. 확장유한요소법에서 인접요소에 동시에 균열이 발생할 경우 균열의 불연속성이 나타나지 않은 부가자유도 잠김 현상을 발견하였고 이에 대한 원인과 그 해결방안을 제시하였다. 또한 실험결과와 유사한 다중균열 발생을 위한 모델링 기법도 제시하였다. 확장유한요소법을 이용한 해석결과는 실험결과와 유사한 균열 양상 및 균열 간격을 보여 주었으며 하중-변위 관계에 있어서도 실험에 근접한 결과를 보여 주었다.
In order to overcome the key shortcoming of Hamilton's principle, recently, the extended framework of Hamilton's principle was developed. To investigate its potential in further applications especially for material non-linearity problems, the focus is initially on a classical single-degree-of-freedom elasto-viscoplastic model. More specifically, the extended framework is applied to the single-degree-of-freedom elasto-viscoplastic model, and a corresponding weak form is numerically implemented through a temporal finite element approach. The method provides a non-iterative algorithm along with unconditional stability with respect to the time step, while yielding whole information to investigate the further dynamics of the considered system.