검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2023.11 구독 인증기관·개인회원 무료
        The safety of deep geological disposal systems has to be ensured to guarantee the isolation of radionuclides from human and related environments for over a million years. Over such a long timeframe, disposal systems can be influenced by climate change, leading to significant long-term impacts on the hydrogeological condition, including changes in temperature, precipitation and sea levels. These changes can affect groundwater flow, alter geochemical conditions, and directly/ indirectly impact the stability of the repository. Hence, it is essential to conduct a safety assessment that considers the long-term evolution induced by climate change. In this context, the Korea Atomic Energy Research Institute (KAERI) is developing the Adaptive Process-based total system performance assessment framework for a geological disposal system (APro). Currently, numerical modules for APro are under development to account for the longterm evolution that can influence groundwater flow and radionuclide transport in the far-field of the disposal system. This study focuses on the development of two numerical modules designed to model permafrost formation and buoyance force due to relative density changes. Permafrost is defined as a ground in which temperature remains below zero-isotherm (0°C) continuously for more than two consecutive years. In regions where permafrost forms, the relative permeability of porous media is significantly reduced. The changes in permeability due to permafrost formation are modelled by calculating the unfrozen fluid content within a porous medium. Meanwhile, buoyancy force can occur when there is a difference in density at the boundary of two distinct water groups, such as seawater (salt water) and freshwater. Sea level change associated with climate change can alter the boundary between seawater and freshwater, resulting in changes in groundwater flow. The buoyancy force due to relative density is modelled by adjusting concentration boundary conditions. Using the developed numerical modules, we evaluated the long-term evolution’s effects by analyzing radionuclide transport in the far-field of the disposal system. Incorporating permafrost and buoyancy force modelling into the APro framework will contribute valuable insights into the complex interactions between geological and climatic factors, enhancing our ability to ensure the secure isolation of radionuclides for extended periods.
        2.
        2022.10 구독 인증기관·개인회원 무료
        Organic complexing agents which are contained in the radioactive waste can form the complex with radionuclides and enhance the solubility of radionuclides. The mobility of radionuclides to the far-field from the repository will be increased by radionuclide-ligand complex formation. Therefore, the assessment of the radionuclides’ solubility should be performed in the presence of organic complexing agents. In this study, five radionuclides (cobalt, strontium, iodine, cesium, and uranium) and three organic complexing agents (ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and isosaccharinic acid (ISA)) were selected as model radionuclides and organic complexing agents, respectively. For simulating the in-situ condition, the groundwater near the repository was collected and applied in solubility experiments and the solubility was measured in various environmental conditions such as different pHs (7, 9, 11, and 13), temperatures (10°C, 20°C, and 40°C), and a range of organic complexing agent concentrations (10-5, 10-4, 10-3, and 10-2 M). In cases of cesium and iodine, they were very soluble in all conditions, and the effect on their solubilities was not observed. However, at high pHs, cobalt and strontium showed lower solubilities than at neutral pH and the solubility enhancement by the organic complexing agents was significant. Moreover, the effects of each organic ligand showed obvious differences and were in the order of EDTA > NTA > ISA. The solubility of uranium was increased with increasing the organic ligand concentration at lower pHs, but the organic complexing agents did not cause a remarkable difference at high pHs. According to these results, the presence of complexing agents could enhance the radionuclides’ solubility and increase the potential to release the radionuclides to the far-field from the repository. Solubility experiments of other major radionuclides in the repository are in progress.
        4.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We report the results of a multi-wavelength study in the North Ecliptic Pole (NEP) deep field and examine the far infrared-radio correlation (FIRC) for high and low redshift objects. We have found a correlation between the GMRT data at 610 MHz and the Herschel data at 250μm that has been used to define a spectral index. This spectral index shows no evolution against redshift. As a result of the study, we show a radio colour-infrared diagram that can be used as a redshift indicator.
        3,000원
        5.
        2012.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A new absorption material, cellulose sponge soaked in cement, was made for anechoic water tank and its acoustical properties were investigated by pulse methods. The sound absorption coefficient a (dB/cm) of the material was obtained in the frequency range of 40~120kHz from the echo reduction ER (dB) and insertion loss IL (dB) data. The result was averagely 1.8dB/cm higher than the sound absorption coefficient a (dB/cm) of cork-filled rubber which is one of the most effective absorption materials. The wedge (1.2~5.0cm long) type absorption tiles were made with this new material. The echo reduction ER (dB) of the absorption tile with 5.0cm wedge measured in water tank was higher than 20dB in the experimental frequency range.
        4,000원