Large and complicated firefighting environment is accelerating in the early activities in the field of fire officials at the time limit situation leads to people's lives and property damage, as well as the loss of the Fire Service. Therefore, the state-of-the-art technology that can respond to rapidly changing fire environment urgently in the field of fire fighting have been introduced should be utilized. These intelligent firefighting robots build daegukmin firefighting safety net that can be used when.
Other advanced technology industries, the most effective ways that can be introduced into the firefighting shall be provided in the current situation of the industry's initial firefighting robots.
When problems occurred in the unstable and/or extreme terrain environment, formal field-driving robots were unable to provide any other options such as the transformation of the wheel and body structure, and so on. For such reason, this paper proposed a novel type of integrated wheel mechanism that can be operated as a conventional driving wheel mode and hybrid wheel-leg mode in order to be negotiated in an unstable terrain environment. The mechanical effect of the proposed variable wheel mechanism was analyzed considering the geometric constraint and power requirement of the actuator for the transformation. In addition, we designed and manufactured the prototype of field-driving robot, which reliably control the variable wheel shape. Finally, the effectiveness of the variable wheel mechanism was verified by preliminary experimental approach.
In this paper, we propose a new algorithm of the guidance line extraction for autonomous agricultural robot based on vision camera in paddy field. It is the important process for guidance line extraction which finds the central point or area of rice row. We are trying to use the central region data of crop that the direction of rice leaves have convergence to central area of rice row in order to improve accuracy of the guidance line. The guidance line is extracted from the intersection points of extended virtual lines using the modified robust regression. The extended virtual lines are represented as the extended line from each segmented straight line created on the edges of the rice plants in the image using the Hough transform. We also have verified an accuracy of the proposed algorithm by experiments in the real wet paddy.