A simplified linearized dynamic equation for the propulsion force generation of an Ostraciiform fish robot with elastically jointed double caudal fins is derived in this paper. The caudal fin is divided into two segments and connected using an elastic joint. The second part of the caudal fin is actuated passively via the elastic joint connection by the actuation of the first part of it. It is demonstrated that the derived equation can be utilized for the design of effective caudal fins because the equation is given as an explicit form with several physical parameters. A simple Ostraciiform fish robot was designed and fabricated using a microprocessor, a servo motor, and acrylic plastics. Through the experiment with the fish robot, it is demonstrated that the propulsion force generated in the experiment matches well with the proposed equation, and the propulsion speed can be greatly improved using the elastically jointed double fins, improving the average speed more than 80%. Through numerical simulation and frequency domain analysis of the derived dynamic equations, it is concluded that the main reason of the performance improvement is resonance between two parts of the caudal fins.
The ostraciiform swimming mode allows the simplest mechanical design and control for underwater vehicle swimming. Propulsion is achieved via the flapping of caudal fin without the body undulatory motion. In this research, the propulsion of underwater vehicles by ostraciiform swimming mode is explored experimentally using an ostraciiform fish robot and some rigid caudal fins. The effects of caudal fin flapping frequency and amplitude on the cruising performance are studied in particular. A theoretical model of propulsion using rigid caudal fin is proposed and identified with the experimental data. An experimental method to obtain the drag coefficient and the added mass of the fish robot is also proposed.
Generally, underwater vehicle type of propeller shows low efficiency about 50% - 55%. However, the efficiency of swimming mechanism of a fish is 60% -70%, more efficient about 20% than screw propellers. Recently, research of underwater vehicle type of fish increase due to its good efficiency and is regarded as a typical bio-mimical robot. In this research, a new algorithm and mechanism that show low energy consumption imitating swimming mechanism of fish proposed increasing speed and running time in field trial.