검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study focuses on fabricating silver flake powder by a mechanical milling process and investigating the formation of flake-shaped particles during milling. The silver flake powder is fabricated by varying the mechanical milling parameters such as the amount of powder, ball size, impeller rotation speed, and milling time of the attrition ballmill. The particle size of the silver flake powder decreases with increasing amount of powder; however, it increases with increasing impeller rotation speed. The change in the particle size of the silver flake powder is analyzed based on elastic collision between the balls, taking energy loss of the balls due to the powder into consideration. The change in the particle size of the silver flake powder with mechanical milling parameters is consistent with the change in the diameter of the elastic deformation contact area of the ball, due to the collision between the balls, with milling parameters. The flake-shaped silver particles are formed at the elastic deformation contact area of the ball due to the collision. Keywords: Flake powder, Milling, Ball collision, Elastic deformation
        4,000원
        2.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is focused on investigating the relation between the particle size of silver flake powder and mechanical milling parameters. Mechanical milling parameters such as ball size, impeller rotation speed and milling time of the attrition ball-mill were controlled to produce silver flake powder. The particle size of the silver flake powder increased with increasing ball size and impeller rotation speed. The change of the particle size of the silver flake powder with mechanical milling parameters was analyzed based on balls motion in the mill container of the attrition ball-mill. The silver flake particles were formed at the elastic deformation area of the ball due to the collision between balls. The change of the particle size of the silver flake powder with mechanical milling parameters well consists with the change of the collision energy of ball with parameters mentioned above.
        4,000원
        3.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Monodispersed flaky silver powder was obtained by controlling the ratios of and Agin in a mixed solution of ethylene glycol and ammonia with an addition of PVP. The effects of on its morphology and size were investigated. In molar ratio was found to be an important reaction factor for the nucleation and crystal growth of Ag powder. The synthesis of flaky powder was optimized at over 6 of molar ratio increased, the size of precipitates was increased regardless of the amount of Pt. In the absence of , the morphology and size of reduced Ag powder were found to be irregular in shape in diameter. However, homogenized fine Ag powder was obtained due to heterogeneous nucleation when used as a cat-alyst, and flaky one was synthesized with the addition of Pt over of Pt/Ag.
        4,000원
        4.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The study for producing the flake powders by milling of aluminum foil and gas atomized powders was carried out. The effects of lifter bars on the ball motions and milling of aluminum foils were also investigated. The aluminum foils were laminated each other, elongated, fragmented into small foils and finally formed into the flake powders during the dry ball-milling. The spherical atomized-powders were milled to coarse flake powders with high aspect ratio and then changed to fine flake powders with lower aspect ratio. Even though long times were required for making flake powders by milling of foils, the water covering areas of them were higher than those of powders milled using gas-atomized powders, suggesting aluminum foils were more plastically deformed by micro-forging. On the other hand, as the number of lifter bars increased, the necessary rotation speeds of milling jar for cascading mode and cataracting mode decreased drastically. It was possible to achieve same quality of milled flake powder by using the lifter bars under the lower milling speeds. The painting test showed that the appearance of painted surface was good and optimum content range of aluminum paste in car paint to maximize the degree of gloss was 3-5%.
        4,000원
        7.
        1996.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A series of test were undertaken in order to estabilish the effect of different milling variables on dimension and quality of aluminium flake powder. Milling conditions such as initial powder size, milling container rotation speed, milling time, and ball size were varied to produce aluminium flake powder. Flake powder could then be obtained with size range from 15 m to 40 m with a maximum specific surface area of 5 /g by controlling milling conditions. Diameter of milled powders with different milling container rotation speed and ball size were compared with that obtained from theoretical model. The best flake powder was obtained in milling condition of initial powder with average size of 19 m, mill container rotation speed of 80 rpm, balls of 9.5 mm diameter, and milling time of 40 hours.
        4,000원