검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        1999.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The flavin-containing monooxygenases (FMOs) (EC 1.14.13.8) are NADPH-dependent flavoenzymes that catalyze oxidation of soft nucleophilic heteroatom centers in a range of structurally diverse compounds including foods, drugs, pesticides, and other xenobiotics. In humans, FMO1 appears to be the predominant form expressed in human fetal liver. cDNA-expressed human FMO and human liver microsomal FMO have been observed to N- and S-oxygenate nucleophilic nitrogen- and sulfur-containing drugs and chemicals, respectively. In the present study, FMOl can be expressed in the baculovirus expression vector system at level of 2.68 nmol FMO1/㎎ of membrane protein. This isoform was examined for its capacity to metabolize methimazole to its S-oxide using thiocholine assay. Kinetic studies of its S-oxide by recombinant human FMO1 result in K_m of 7.66 μM and V_(max) of 17.79 nmol/min/㎎ protein.
        4,000원
        3.
        2015.07 서비스 종료(열람 제한)
        In the facultative long-day (LD) plant Arabidopsis thaliana, FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (FKF1) is activated by blue light and promotes flowering through the transcriptional and post-transcriptional regulation of CONSTANS under inductive LD conditions. By contrast, the facultative short day (SD) plant rice (Oryza sativa) flowers early under inductive SD and late under non-inductive LD conditions; the regulatory function of OsFKF1 remains elusive. Here we show that osfkf1 mutants flower late under SD, LD, and natural LD conditions. Transcriptional analysis revealed that OsFKF1 up-regulates expression of the floral activator Ehd2 and down-regulates expression of the floral repressor Ghd7; these regulators up- and down-regulate Ehd1 expression, respectively. Moreover, OsFKF1 can upregulate Ehd1 expression under blue light treatment, without affecting the expression of Ehd2 and Ghd7. In contrast to the LD-specific floral activator Arabidopsis FKF1, OsFKF1 likely acts as an autonomous floral activator because it promotes flowering independent of photoperiod, probably via its distinct roles in controlling expression of rice-specific genes including Ehd2, Ghd7, and Ehd1. Like Arabidopsis FKF1, which interacts with GI and CDF1, OsFKF1 also interacts with OsGI and OsCDF1 (also termed OsDOF12). Thus, we have identified similar and distinct roles of FKF1 in Arabidopsis and rice.