검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Toilet liquid-type cleaners utilize operating technology that employs buoyancy mechanism to inject uniform amount of cleaning solution. Flow characteristics of velocity and pressure distributions in the flow field of toilet flush cleaner injection device have been analyzed with CFD method. The flow rate decreases near the inlet of the system, where it contacts the container of the cleaning liquid bottle. It then increases near the injection device stopper and decreases again as it moves toward the system outlet The height of the cleaning solution decreases from 12 cm to 3 cm when using the spray device, the average outlet velocity decreases by approximately 73%. The solution level difference increases from 1.616 cm to 3.216 cm, the inlet velocity decreases by approximately 4.1%~5.6%. These predicted results can be widely applied as basic conceptual design data for highly efficient toilet flush cleaner injection device.
        4,000원
        4.
        1995.03 KCI 등재 서비스 종료(열람 제한)
        The reaction rate, equilibrium, and flow injection analysis methods were fundamentally evaluated for the determination of aqueous ammonia. The selected indophenol blue method was based on the formation of indophenol blue in which ammonium ion reacted with hypochlorite and phenol in alkaline solution. In the optimized reaction condition, the reaction followed 1st order reaction kinetics and the final product was stable. The absorbance measurements before and after the equilibrium were utilized for the reaction rate and equilibrium methods. The reaction rate methods, based on the relative analytical signals for the possibility of eliminating interferents, were shown to have good linear calibration curves but the detection limit and the calibration sensitivity were poorer than those in the equilibrium method. The detection limits were 32-49 ppb and 24 ppb for the reaction rate and equilibrium methods, respectively. In the flow injection analysis, the absorbance was measured before the equilibrium reached and thus resulted in 30% reduction of calibration sensitivity. However, the detection limit was 11 ppb, indicating that the peak-to-peak noise for the blank was remarkably improved. Compared to the manual methods, the optimized experimental condition in a closed reaction system reduced the blank absorbance and the inclusion of ammonia from the atmosphere was prevented. In addition, highly reproducible mixing of sample and reagents and analytical data extracted from continuous recording showed excellent reproducibility.