검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the physicochemical characteristics and fluoride adsorption capacity of the bone char pyrolyzed at different temperatures; 200℃, 300℃, 350℃, 400℃, 500℃, 600℃, and 700℃ were investigated. Analytical studies of the synthesized bone char including; SEM-EDS, XRD, BET and FT-IR, showed the presence of hydroxyapatite(HAP), which is the main substance that adsorbs fluoride from aqueous solutions containing high fluoride concentrations. Bone char pyrolyzed from 350∼700℃ specifically revealed that, the lower the temperature, the higher the fluoride adsorption capacity and vice versa. The loss of the fluoride adsorption function of HAP (OH- band in the FTIR analysis) was interpreted as the main reason behind this inverse correlation between temperature and fluoride adsorption. Bone char produced at 350°C hence exhibited a fluoride adsorption capacity of 10.56 mgF/g, resulting in significantly higher adsorption compared to previous studies.
        4,000원
        2.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to find out the effect of particle size of sediment on adsorption of fluoride. Particle size is classified as sand, silt and clay. Adsorption equilibrium time, adsorption isotherms and the effect of pH were investigated through batch tests. The pHpzc of sand, silt, clay was respectively 6, 8, 4.5 and AEC (anion exchange capacity) was highest in silt, respectively 0.0095, 0.0224, 0.014 meq g-1. Adsorption of fluoride on the sediment was in equilibrium within 300 minutes from all particle size. The experimental data of isotherms at various pH were well explained by Freundlich equation. As the experimental results of the effect of pH, the adsorption efficiency of sand and silt were reduced after the pHpzc. However, the adsorption efficiency of clay was maintained after the pHpzc, and decreased rapidly higher than pH 12.
        4,000원
        3.
        2015.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구는 양이온 불균질막을 제조하기 위해 PVdF와 상용 양이온교환수지를 배합하여 제조하고 최적의 조건제시 및 기존 상용화막과 비교 평가하였다. 연구결과 불균질막이 기존의 상용화막보다 이온교환용량, 전기저항, 함수율 부분에서 높은 물성을 나타내기 위해서는 이온교환수지의 무게 비율을 40% 이상 첨가해야 한다는 것을 확인하였다. 인장강도가 상용화 막보다 높기 위해서는 이온교환수지의 무게 비율을 50% 이하로 첨가해야 한다는 것을 확인하였다. 따라서 화학적 특성과 기 계적 특성을 고려했을 때, PVdF와 이온교환분말의 최적 비율은 60 : 40이며, 이때의 전기저항 1.82 Ω⋅cm-1, 함수율 79%, 이 온교환용량 1.60 meq/g으로 측정되었고 기계적 강도는 0.97 MPa로 측정되었다. 이때, TDS 제거율은 약 40%로 측정되었다.
        4,000원
        4.
        2014.05 KCI 등재 서비스 종료(열람 제한)
        In order to remove fluoride ions from aqueous solution, PVC-Al(OH)3 beads were prepared by immobilizing Al(OH)3 with polyvinyl chloride (PVC). The prepared PVC-Al(OH)3 bead was characterized by using SEM, EDS and Zeta potential. Dependences of pH, contact time and initial fluoride concentration on the adsorption of fluoride ions were studied. The optimal pH was in the range of 4~10. The adsorption was rapid during the initial 12 hr, and equilibrium was attained within 72 hr. The adsorption rate of fluoride ions by PVC-Al(OH)3 beads obeyed the pseudo-second-order kinetic model. The maximum adsorption capacity obtained from Langmuir isotherm model was found to be 62.68 mg/g.