검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        During the decay process of food waste, odor and leachate are generally produced because food is easily decomposed due to its high organic and moisture contents. In this study, various food waste samples, including samples artificially prepared and collected from actual waste containers, were tested to determine odor and leachate production as the samples were decomposed at a constant temperature of 35°C. In the air phase, total volatile organic compounds (TVOCs), acetaldehyde (AA), methyl mercaptan (MM), hydrogen sulfide (H2S), and dimethyl sulfide (DMS) were measured as a function of the decay period for four days. The results of the experiment showed that TVOC and AA were produced at higher concentrations in the actual food waste than in all artificial wastes. The AA concentration accounted for about 90% of the TVOC in all of the waste samples except for the food waste containing meat and fish only. The concentrations of volatile sulfur compounds (VSCs) were generally lower than 100 μg/kg, and the concentration of DMS was the highest among the VSCs. In the waste sample containing meat and fish only; however, the concentration of VSCs increased up to 1,700 μg/kg, and mostly consisted of MM and DMS. Complex odor concentrations were found to be the highest after a decay period of 12-48 hours. In addition, the complex odor was mostly related to VSCs with low odor thresholds rather than the TVOC. The pH values mostly decreased from 5 to 3.5 as the waste samples were in the decomposition periods, while the pH value increased to 6 in the food waste containing meat and fish only. Consequently, odor intensity and leachate production were the highest in the 12-48 hour range as the decomposition started, and thus an appropriate control strategy needs to be implemented based on the waste composition and the decay period.
        4,300원
        2.
        2012.02 구독 인증기관 무료, 개인회원 유료
        From results of three components analysis about food waste, moisture content appeared high in order of school(89.1%), townhouse(64.9%), apartment(63.2%) and home(63.2%). And content of ash also appeared high in order of school(8.8%), townhouse(6.3%), apartment(5.4%) and home(4.2%). This is judged as cause of difference of moisture content according to emission-source, diversity of kind of cooked food and volume-rate disposal system which is not performed. Meanwhile, combustible content is 10.9~32.6% and it is the most highest in order of home, apartment, townhouse and school. And big difference of standard deviation of apartment and townhouse is judged as difference of homogeneity due to co-emission of food waste. In addition, Low heating value appeared high in order of home(1086.07 kcal/kg), apartment(1033.69 kcal/kg), townhouse (678.07 kcal/kg) and school(9.18 kcal/kg). And the reason that heating value of school is very low is error about simple formula which is applied when moisture content is more than 50%. And it can be confirmed that this is difficult in analysis of Low heating value of food waste.
        4,000원
        3.
        2017.05 서비스 종료(열람 제한)
        음식물류 폐기물은 높은 수분 및 유기물 함량으로 인해 쉽게 부패되며, 그 과정에서 TVOC 및 황화수소 등 많은 종류의 악취와 다양한 미생물들이 발생한다. 황계열 및 TVOC 와 같은 악취물질은 수거용기 내부에서 발생하여 생활악취 민원의 주요 원인이 되고 있다. 또한 음식물류 폐기물을 버리고 부패되는 과정에서 부유미생물이 발생하여 병원성 세균감염 및 알레르기를 일으킬 가능성이 있다. 따라서 음식물류 폐기물의 악취 및 부유미생물에 대한 대책이 시급한 상황이나 이에 대한 연구는 미흡한 실정이다. 음식물류 폐기물에서 발생하는 악취 및 부유미생물은 계절, 기온, 재료에 따라 많은 차이가 생겨 처리장치의 설계인자를 도출하거나 성능을 정량적으로 평가하기에 어려움이 있다. 따라서 처리장치의 설계 및 성능평가를 위해 성상이 비교적 일정한 표준화 된 음식물류 폐기물의 제조가 필요하며 본 연구에서는 서울시에서 규정한 ‘음식물쓰레기 감량기기, 종량기기 가이드라인(2014)’의 중량비율을 참고하여 채소류, 과일류, 곡물류, 어육류 및 함수율을 조정하여 표준화 된 음식물류 폐기물을 제조하였다. 제조한 음식물류 폐기물의 부패기간에 따른 TVOC 및 복합악취, 부유미생물의 발생 경향을 파악함으로써 처리장치의 기초설계 인자를 도출하고자 하였다. 실험실에서 제조한 음식물류 폐기물의 부패기간에 따른 악취 및 부유미생물의 농도 변화를 측정하기 위하여 12시간 간격으로 TVOC, 복합악취, 부유미생물의 농도변화를 관찰하였다. 실험결과 TVOC, 복합악취, 부유미생물 농도가 60시간까지 지속적으로 증가하였으며 최대농도는 TVOC 86 ppm, 복합악취 3000배, 부유미생물 2517 CFU/m³로 측정되었다. 그리고 72시간 부패 후 TVOC 농도는 84 ppm이 측정되어 소량 감소되었지만 복합악취와 부유미생물의 농도는 복합악취 1000배, 부유미생물 1700 CFU/m³로 측정되었으며 확연히 감소되는 경향을 볼 수 있었다.
        4.
        2012.10 KCI 등재 서비스 종료(열람 제한)
        Quantitative analysis of food waste, especially food loss, has received worldwide attention in the viewpoint of efficient food supply and consumption. Food waste generation characteristics expressed as the place and the quantity are influenced by food consumption styles. Food consumption styles can be classified into Meals at home, Convenience meals, and Meals outside the home. And also food waste was classified into food loss and inedible portion, here, the two have different meaning in terms of reason for generation and the social meaning. Using Material Flow Analysis (MFA), food and food loss flow of Japan in 2008 was drawn, and food waste generation rate by food consumption styles were calculated. First result is that meat, sea foods, and fat are much consumed in externalized meal (convenience meals or meals outside the home). After allocating foodstuffs to each food consumption style, we made a flow diagram of food waste. In wholistic viewpoint, it indicated that food loss are generated mostly in households and restaurants, which is caused by consumer's carelessness. In the viewpoint of food consumption style, convenience meals has the lowest level on total food loss including consumer sector and industrial sector. However, in only industrial part, convenience meals has the highest level on food loss, which means convenience meals increase food loss in supply chain before reaching consumer. Social changes have driven the increase of convenience meals, but also food waste weight-charged system, which is new policy in Korea, may cause the increase of pre-cooked food consumption in households and restaurants. Therefore, it is necessary to do monitor the change of food consumption styles and whole sectors of food waste generation sectors. Material Flow Analysis can be considered as a useful tool to monitor the change and assess the performance by the system from a holistic perspective.