본 연구는 로메인 상추에서 병원성미생물이 생존과 생육의 특성을 분석하여 안전관리 정보를 확보하고자 실시하였다. 로메인 상추에서 분무 접종한 E. coli O157:H7은 72시간 배양 후 초기균수 보다 2.0 log CFU/g 수준으로 증가하여 생존 및 증식이 가능한 것으로 판단되었다. 상추 잎의 상처 유무에 따른 E. coli O157:H7은 배양 72시 간 후 유의적 차이가 없었다. 상추 잎에 인위적인 상처에 내어 E. coli O157:H7을 접종하고 병원균의 분포를 조사한 결과 상처가 없는 상추는 표면이 매끄러워 균이 부착하지 못하거나 균수가 매우 낮았고, 상처가 있는 상추 잎은 거친 표면에 균이 밀집되어 상처를 통해 상추 내부로 침입하는 것으로 판단되었다. 병원성미생물의 상추 추출물 이용 여부는 10-100% 농도에서 배양 24시간 이후에 E. coli O157:H7 8.9 log CFU/mL, L. monocytogenes 8.6 log CFU/mL, P. carotovorum 8.8 log CFU/mL로 나타났다. 이는 병원성미생물과 식물병원균이 유사한 4 log CFU/g 이상의 증가율을 나 타내어 미생물이 상추 추출물을 영양원으로 사용할 수 있는 것으로 판단되었다. 상추 추출물 0.1%에서 초기 접종 농 도와 비교하여 E. coli O157:H7 2.7, L. monocytogenes 1.3, P. carotovorum 2.9 log CFU/mL 수준으로 증가하였다. 이에 따라 병원성 미생물의 최소생육농도는 0.1%보다 낮은 것으로 판단되었고, 상처를 통해 지속적으로 0.1% 수준의 상추 추출물이 병원성미생물에 제공되면 상추 내부에서도 생존 및 증식이 가능할 것으로 확인하였다.
본 연구는 영양부추의 미생물학적 안전성을 확보하기 위하여 이산화염소와 차아염소산나트륨을 이용하여 미생물의 저감효과를 분석하고, 최적의 영양부추와 소독제의 비율을 결정하기 위하여 수행하였다. 이를 위하여 영양부추에 E. coli, Salmonella spp., S. aureus, B. cereus을 7.0 log CFU/g 정도로 접종 한 후 이산화염소는 3, 5, 10, 25, 100 ppm 차아염소산나트륨은 100, 150, 200 ppm에서 5, 10, 30, 60분간 처리하였으며, 또한 유기물이 이산화염소와 차아염소산나트륨의 효과에 미치는 영향을 분석하기 위해 영양부추와 소독제를 1 : 2, 1 : 4, 1 : 9, 1 : 19 비율로 처리 하여 소독제의 효과를 분석하였다. 그 결과, 소독제의 농도에 따른 저감효과는 차아염소산나트륨 150 ppm, 이산화 염소 50 ppm으로 30분간 처리시 일반세균수는 2.0 log CFU/ g 정도 감소효과를 나타내었으며, 식중독세균은 차아염소 산나트륨 100 ppm, 이산화염소 3 ppm에서 약 2.0 log CFU/g 정도 감소효과를 보였다. 한편, 이산화염소의 경우 50 ppm 으로 30분간 영양부추를 처리할 경우 탈색 등 상품성이 저하되어 현장 적용이 어렵다고 판단되었다. 또한 영양부 추와 소독제 처리 비율에 따른 미생물 저감효과는 일반세 균의 경우 1 : 4에 비하여 1 : 9에서 유의적으로 높은 저감 효과를 보였다(p < 0.05). 확립된 기술을 영양부추 생산농 장에 적용한 결과 일반세균수의 경우 2.7 log CFU/g, 대장 균군의 경우 4.0 log CFU/g의 감소효과를 보였다. 따라서 영양부추를 세척이후 차아염소산나트륨 150 ppm에서 1 : 9 정도의 비율로 30분간 침지하면 미생물 안전성을 향상시 킬 수 있으며, 최종 소비자에게 보다 안전한 부추의 공급이 가능할 것으로 판단된다.
This mini-review focused on the current advances in the development and the application of the antibacterial agents produced from probiotics strains against foodborne pathogens. Inhibitory activity of the pathogen growth could be achieved by co-culture with probiotics and/or the treatment of metabolites extracted from probiotics culture, whereas strain-dependent efficacy was mainly reported according to the bacterial species of the target pathogens. To overcome the limited antibacterial spectrum and the efficacy of the metabolites from probiotics, the recent research highlight the discovery of novel bioactive substances with broad range of the inhibitory activity of foodborne pathogens and mode-of-action which has not been reported as the major research goal. Moreover, understanding the distribution of functional and regulation genes coding the production of the antibacterial metabolites based on the bacterial genome analysis can provide the clues for the mechanisms of the pathogen control by using probiotics. Major strategies on the application of the genomics in this research area can be represented as follows: 1) functional annotation specialized for antimicrobial proteins, 2) assessment of the antibacterial effects followed by the general/functional annotation, 3) genome and metabolites analysis for the purification of antimicrobial proteins, 4) comparative genomics and the characterization of antimicrobial potential. Especially the relationship between phenotype-genotype based on genomic bioinformation with the results of the practical efficacy tests of bacterial metabolites as an active substance of disinfectants and/or preservatives can be expected to act as supportive research for broadening our knowledge regarding the key metabolic pathways associated with the production of antibacterials from probiotics.