검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2018.10 구독 인증기관·개인회원 무료
        Entomopathogenic fungi have been known as promising candidates for biological control of insect pests. Recently, researchers consider the fungal thermotolerance in formulations and field applications. In this study, we investigated the production of thermotolerant Isaria javanica and I.fumosorosea conidia through grain-based solid cultures and exposure to light stress. As results, of the ten grain substrates, Italian millet, rice, perilla seed and sesame, rice, sorghum produced highly thermotolerant conidia in the strains. The two strains were exposed to a light stress and showed enhanced thermal stability compared to control, when exposed to 45°C for 2 hours. This work suggests that heatresistant entomopathogenic fungal conidia can be produced by grainbased solid cultures and exposure to light stress.
        2.
        2018.04 구독 인증기관·개인회원 무료
        Entomopathogenic fungi have been known as promising candidates for biological control of insect pests. Recently, researchers consider the fungal thermotolerance in formulations and field applications. In this study, we investigated the production of thermotolerant Isaria javanica and I.fumosorosea conidia through grain-based solid cultures and exposure to light stress. As results, of the ten grain substrates, Italian millet, rice, perilla seed and sesame, rice, sorghum produced highly thermotolerant conidia in the strains. The two strains were exposed to a light stress and a heat stress. And they showed enhanced thermal stability compared to control, when exposed to 45°C for 2 hours. This work suggests that heat-resistant entomopathogenic fungal conidia can be produced by grain-based solid cultures and exposure to light stress.
        3.
        2014.07 서비스 종료(열람 제한)
        Numerous environmental stresses, such as abiotic and biotic stresses, cause significant yield loss in crops and can significantly affect their development. Un the field conditions, crops are exposed to a variety of concurrent stresses. Combined high temperature and linked diseases can cause considerable damage that eventually leads to crop death. Hence, this study was conducted to characterize the genes encoding the nucleotide-binding site (NBS) motif obtained from transcriptome profiles of two cabbage genotypes with contrasting responses to heat stress. We selected 80 up-regulated genes form a total of 264 loci, among which 17 were confirmed to be complete and incomplete members of the TIR-NBS-LRR (TNL) class families, and another identified as a NFYA-HAP2 family member. Expression analysis using qRT-PCR revealed that 8 genes showed significant responses to heat shock treatment and F. oxysporum infection. Additionally, in the commercial B. oleracea cultivars with resistance to F. oxysporum, Bol007132, Bol016084, and Bol030522 genes showed dramatically higher expression levels in the F. oxysporum resistant line than the intermediate and susceptible lines. The results of this study may facilitate the identification and development of molecular markers based on multiple stress resistance genes related to heat and fungal stress under field conditions in B. oleracea.