검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2023.11 구독 인증기관·개인회원 무료
        In 2012, POSIVA selected a bentonite-based (montmorillonite) block/pellet as the backfilling solution for the deposition tunnel in the application for a construction license for the deep geological repository of high-level radioactive waste in Finland. However, in the license application (i.e. SC-OLA) for the operation submitted to the Finnish Government in 2021, the design for backfilling was changed to a granular mixture consisting of bentonite (smectite) pellets crushed to various sizes, based on NAGRA’s buffer solution. In this study, as part of the preliminary design of the deep geological repository system in Korea, we reviewed history and its rationale for the design change of Finland’s deposition tunnel backfilling solution. After the construction license was granted by the Finnish Government in 2015, POSIVA conducted various lab- and full-scale in-situ tests to evaluate the producibility and performance of two design alternatives (i.e. block/pellet type and granular type) for backfilling. Principal demonstration tests and their results are summarized as follows: (a) Manufacturing of blocks using three types of materials (Friedland, IBeco RWC, and MX-80): Cracking and jointing under higher pressing loads were found. Despite adjusting the pressing process, similar phenomena were observed. (b) 1:6 scale experiment: Confirmation of density difference inhomogeneity due to the swelling of block/pellet backfill and void filling due to swelling behavior into the mass loss area of block/pellet. (c) FISST (Full-Scale In situ system Test): Identification of technical unfeasibility due to the inefficient (too manual) installation process of blocks/pellets and development of an efficient granular in-situ backfilling solution to resolve the disadvantage. (d) LUCOEX-FE (Large Underground Concept Experiments – Full-scale Emplacement) experiment: Confirmation of dense/homogeneous constructability and performance of granular backfilling solution. In conclusion, the simplified granular backfill system is more feasible compared to the block/ pellet system from the perspective of handling, production, installation, performance, and quality control. It is presumed that various experimental and engineering researches should be preceded reflecting specific disposal conditions even though these results are expected to be applied as key data and/or insights for selecting the backfilling solution in the domestic deep geological repository.
        2.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Technology for high-level-waste disposal employing a multibarrier concept using engineered and natural barrier in stable bedrock at 300–1,000 m depth is being commercialized as a safe, long-term isolation method for high-level waste, including spent nuclear fuel. Managing heat generated from waste is important for improving disposal efficiency; thus, research on efficient heat management is required. In this study, thermal management methods to maximize disposal efficiency in terms of the disposal area required were developed. They efficiently use the land in an environment, such as Korea, where the land area is small and the amount of waste is large. The thermal effects of engineered barriers and natural barriers in a high-level waste disposal repository were analyzed. The research status of thermal management for the main bedrocks of the repository, such as crystalline, clay, salt, and other rocks, were reviewed. Based on a characteristics analysis of various heat management approaches, the spent nuclear fuel cooling time, buffer bentonite thermal conductivity, and disposal container size were chosen as efficient heat management methods applicable in Korea. For each method, thermal analyses of the disposal repository were performed. Based on the results, the disposal efficiency was evaluated preliminarily. Necessary future research is suggested.
        5,500원
        3.
        2022.10 구독 인증기관·개인회원 무료
        Copper is used for deep geological disposal canisters of spent nuclear fuels, because of excellent corrosion resistance in an oxygen-free environment. However, sulfide formation during the long-term exposure under deep geological disposal condition can be harmful for the integrity of copper canisters. Sulfur around the canisters can diffuse along grain boundaries of copper, causing grain boundary embrittlement by the formation of copper sulfides at the grain boundaries. The development of copper alloys preventing the formation of copper sulfides along grain boundaries is essential for the longterm safety of copper canisters. In this research, the mechanisms of copper sulfide formation at the grain boundary are identified, and possible alloying elements to prevent the copper sulfide formation are searched through the first principle calculations of solute atom-vacancy binding energy and the molecular dynamics calculation of grain boundary segregation energy. The comparison with the experimental literature results on the mitigation of copper embrittlement confirmed that the theoretically identified mechanisms of copper sulfide formation and the selected alloy elements are valid. Thereafter, binary copper alloys were prepared by using a vacuum arc melting furnace. Sulfur was added during casting of the copper alloys to induce the sulfide formation. The cast alloys were cold-rolled into a plate after homogenization heat treatment. The microstructure and mechanical property of each alloy were investigated after recrystallization in a vacuum tube heat treatment furnace. The copper alloys developed in this study are expected to contribute in increasing the long-term safety of deep geological disposal copper canisters by reducing the embrittlement caused by the sulfide formation.
        4.
        2022.05 구독 인증기관·개인회원 무료
        The natural barrier, a component of the deep disposal system, has site-specific characteristics depending on the site of the repository, and is one of the main considerations for long-term safety evaluation after closure along with the engineered barrier among the multiple barrier systems of the repository. The natural barrier is defined in Korea as the natural underground and surface structures that can restrict the exposure of radioactive waste, human intrusion or groundwater infiltration into a disposal facility, and the transfer of radionuclides. It includes bedrocks and soils surrounding the engineered barriers of radioactive wastes [Notice of the NSSC, No. 2020021]. This study analyzed foreign regulatory requirements related to natural barriers, requirements for natural barrier and performance target of Sweden and Finland (safety functions and target characteristics of natural barriers, e.g. natural barrier composition, geological characteristics, hydrogeological characteristics). Overseas regulations and cases referenced to derive regulations of general safety requirements on natural barrier are IAEA SSG-14, SSMFS 2008:21 in Sweden, STUK/Y/4/2018 in Finland, and POSIVA SKB Report 01, a joint report between POSIVA and SKB. The repository site and repository depth should be chosen so that the geological formation provides adequately stable and favorable conditions to ensure that the repository barriers perform as intended over a sufficient period of time. The conditions intended primarily concern temperature- related, hydrological, mechanical (for example, rock mechanics and seismology) and chemical (geochemistry, including groundwater chemistry) factors. Furthermore, the repository site should be located at a secure distance from natural resources exploited today or which may be exploited in the future [SSMFS 2008:21]. Finland regulations also suggests similar requirements [STUK Y-4-2018]. According to the above regulations, POSIVA SKB report 01 mentions both the host rock and the underground opening as natural barriers and requires a safety function, and the main safety functions of the host rock and underground opening are as follows: (1) Isolation from the surface environment; (2) Favorable thermal conditions; (3) Mechanically stable conditions; (4) Chemically favorable conditions; and (5) Favorable hydrogeological conditions with limited transport of solutes. Such safety functions would provide insight for understanding of the natural barrier of deep geological disposal system.
        7.
        2019.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        국내 고준위 방사성폐기물 심층처분시스템에 대한 프로세스 기반의 종합성능평가체계(APro) 개발을 위하여 사용자 편의성이 향상된 모델링 인터페이스를 구축하였다. APro의 모델링 인터페이스는 프로그래밍 언어인 MATLAB을 이용하여 구축되었고, 다중물리현상 모사가 가능한 COMSOL과 지화학반응 계산이 가능한 PHREEQC를 계산 엔진으로 활용하여 연산 자분리 방식을 적용하였다. APro는 모델링 영역을 기존의 정형화된 처분시스템으로 제한함으로써 모델의 자유도는 낮지만, 사용자 편의성을 향상시켰다. 처분시스템에서 고려되는 주요 현상들을 모듈화하였고, 이를“Default process”와 다수의“Alternative process”로 구분하여 사용자가 선택할 수 있도록 함으로써 모델의 유연성을 높였다. APro는 크게 입력자료 부분과 계산실행 부분으로 구성된다. 기본 입력자료는 하나의 EXCEL 파일에 일정한 포맷으로 정리되고, 계산실행 부분은 MATLAB을 이용하여 코딩되었다. 최종적인 전체 계산 결과는 독립적인 COMSOL 파일 형태로 생성되도록 하여 COMSOL을 이용한 계산 결과의 후처리가 가능하도록 하였다.
        4,000원
        10.
        2017.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        방사성폐기물 지층 처분을 위한 부지 선정 과정에서 심층 처분장의 안전성을 평가하는데 필요한 입력 자료를 제공하기 위해 부지특성조사를 수행한다. 본 논문에서는 부지특성조사를 선도하여 수행하였던 해외 사례를 분석하고, 국내에서 방사성폐 기물 처분을 위해 수행해야 할 부지특성조사 방법을 제안하고자 하였다. IAEA가 고려하는 부지특성조사 방법은 단계별 부 지특성조사로 본 논문에서 소개된 해외의 경우도 이 방법을 따르고 있는데, 부지특성조사는 시기별, 조사 항목별로 다수의 지역에서 개략적인 부지의 정보를 도출하는 예비 부지특성조사와 조사 결과 선정된 지역에서 보다 자세한 부지특성자료를 생산하기 위한 상세 부지특성조사로 구분할 수 있다. 특히, 상세 부지특성조사 단계에서는 조사지역에 장심도 시추공을 굴 착하여 심부 영역에 대한 지질 특성을 바탕으로, 수리지질, 수리-지화학, 암석역학, 열, 용질이동에 대한 특성을 도출해야 한 다. 단계별 부지특성조사를 통해 도출된 부지 고유의 지질환경 특성은 부지특성모델로 구축되어야 하는데, 이를 종합하여 해석해야 비로소 조사지역의 부지특성을 이해하고, 지층 처분에 보다 유리한 부지를 최종 후보지역으로 선정할 수 있는 것 이다. 해외 사례를 살펴본 결과, 부지특성조사 단계에 소요되는 시간은 대략 7~8년이 소요될 것으로 예상되나, 이를 계획하 고 수행하는 시스템이 뒷받침 되지 않을 경우 보다 지연될 수 있을 것이다.
        5,200원
        11.
        2012.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        우리나라에서의 고준위폐기물 처분을 위한 연구는 1997년부터 시작하였으며, 국내에서 발생하는 경수 로 사용후핵연료와 중수로 사용후핵연료를 처분대상으로 하여 2006년도에는 한국형 사용후핵연료 기준 처분시스템(KRS) 개발을 완료하였다. 이후, 경수로 사용후핵연료로부터 재활용 가능물질을 회수하는 재 순환주기를 고려하여 재활용을 위한 파이로공정 연구를 수행하고 있어, 이 공정으로부터 발생하는 고준 위폐기물에 대한 처분연구를 수행하고 있다. 본 논문에서는 심지층 처분시스템 개념설정에 중요한 인자 인 파이로공정으로부터 발생하는 처분대상 폐기물인 세라믹고화 폐기물과 금속폐기물에 대한 특성분석 결과와 폐기물별로 특성에 적합한 처분용기 개념을 기술하였다. 이를 바탕으로 처분대상 폐기물에서 발 생하는 붕괴열의 특성을 고려한 열해석을 통하여 지하처분시설에서의 처분용기 간격과 처분동굴 간격을 결정하고, 이를 반영하여 심지층 처분 시스템(A-KRS) 개념을 도출하였다. 이렇게 도출된 처분시스템 입지를 검토하기 위하여 KURT 시설 부지를 대상으로 가상부지로 설정하고, 가상 부지에 대한 지질 및 수리 특성을 이용하여 최적의 배치(안)을 제시하였다. 본 연구의 결과는 추후 실제 부지특성자료와 연계하여 처분장 설계 및 처분안전성 평가에 입력자료로 활용될 것이다.
        4,000원