검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The ocean is linked to long-term climate variability, but there are very few methods to assess the short-term performance of forecast models. This study analyzes the short-term prediction performance regarding ocean temperature and salinity of the Global Seasonal prediction system version 5 (GloSea5). GloSea5 is a historical climate re-creation (2001-2010) performed on the 1st, 9th, 17th, and 25th of each month. It comprises three ensembles. High-resolution hindcasts from the three ensembles were compared with the Array for Real-Time Geostrophic Oceanography (ARGO) float data for the period 2001-2010. The horizontal position was preprocessed to match the ARGO float data and the vertical layer to the GloSea5 data. The root mean square error (RMSE), Brier Score (BS), and Brier Skill Score (BSS) were calculated for short-term forecast periods with a lead-time of 10 days. The results show that sea surface temperature (SST) has a large RMSE in the western boundary current region in Pacific and Atlantic Oceans and Antarctic Circumpolar Current region, and sea surface salinity (SSS) has significant errors in the tropics with high precipitation, with both variables having the largest errors in the Atlantic. SST and SSS had larger errors during the fall for the NINO3.4 region and during the summer for the East Sea. Computing the BS and BSS for ocean temperature and salinity in the NINO3.4 region revealed that forecast skill decreases with increasing lead-time for SST, but not for SSS. The preprocessing of GloSea5 forecasts to match the ARGO float data applied in this study, and the evaluation methods for forecast models using the BS and BSS, could be applied to evaluate other forecast models and/or variables.
        4,200원
        2.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Seasonal forecasting has numerous socioeconomic benefits because it can be used for disaster mitigation. Therefore, it is necessary to diagnose and improve the seasonal forecast model. Moreover, the model performance is partly related to the ocean model. This study evaluated the hindcast performance in the upper ocean of the Global Seasonal Forecasting System version 5-Global Couple Configuration 2 (GloSea5-GC2) using a multivariable integrated evaluation method. The normalized potential temperature, salinity, zonal and meridional currents, and sea surface height anomalies were evaluated. Model performance was affected by the target month and was found to be better in the Pacific than in the Atlantic. An increase in lead time led to a decrease in overall model performance, along with decreases in interannual variability, pattern similarity, and root mean square vector deviation. Improving the performance for ocean currents is a more critical than enhancing the performance for other evaluated variables. The tropical Pacific showed the best accuracy in the surface layer, but a spring predictability barrier was present. At the depth of 301 m, the north Pacific and tropical Atlantic exhibited the best and worst accuracies, respectively. These findings provide fundamental evidence for the ocean forecasting performance of GloSea5.
        5,200원
        3.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 한국기상청의 장기예측시스템 현업모형인 GloSea5의 성층권 극소용돌이 강화사례에 대한 예측성 을 진단 및 검증하였다. 진단에 사용된 통계량은 이상상관계수(ACC, Anomaly Correlation Coefficient)와 평균제곱근 예측성(MSSS, Mean Squared Skill Score)으로, 1991-2010년간 발생한 14개 극소용돌이 강화사례에 대한 GloSea5의 예측성한계는 ACC를 기준으로 13.6일, MSSS를 기준으로 18.5일로 나타났다. 모형의 평균제곱오차(MSE, Mean Squared Error)의 각 성분을 정량적으로 비교분석한 결과, 예측성을 저하시키는 가장 큰 요인은 맴돌이(에디)오차로, 그 중 에디의 위상오차가 전체 예측오차의 큰 부분을 차지하는 것으로 나타났다. 또한 극소용돌이 현상이 수평적으로 큰 규모를 가지는 만큼 동서파수 1의 에디와 관련한 오차가 더 작은 규모의 에디에 비해 가장 크게 예측오차에 기여하는 것으로 나타났다. 한편, 분석한 사례들에 대하여 GloSea5의 대류권 순환에 대한 예측성은 성층권 예측성과는 큰 관련이 없는 것으로 나타났다. 이는 단순히 GloSea5 모형이 성층권-대류권 접합과정을 잘 모의하지 못하기 때문에 나타난 결과로 유추할 수 있다. 하지만, 극소용돌이 강화에 의한 영향에 비해 대류권에서 내부변동성의 절대적인 크기가 종종 크게 나 타난다는 점을 감안하면, 모형에서 성층권-대류권 접합을 잘 모의하고 있더라도 극소용돌이 강화 자체만의 영향이 뚜렷 하게 나타나지 않았을 가능성 또한 간과하면 안 될 것이다.
        5,100원
        4.
        2018.11 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 ANFIS 기반 GloSea5 앙상블 기상전망 개선 기법을 개발하고 평가하였다. 대상유역은 국내 주요 다목적댐인 충주댐 유역을 선정하였으며, 개선 기법은 ANFIS 기반의 전·후처리기법으로 구성된다. 전처리 기법에서 GloSea5의 앙상블 멤버에 가중치를 부여하며(OWM), 후처리 과정에서는 전처리결과를 편의보정 한다(MOS). 평가결과 편의보정된 GloSea5에 비해 예측성능이 개선되었으며, CASE3, CASE1, CASE2 순으로 모의성능이 우수하였다. 전처리 기법은 강수의 변동성이 큰 계절에 개선효과가 우수하였으며, 후처리 기법은 전처리로 개선하지 못한 오차를 줄일 수 있는 것으로 나타났다. 따라서 본 연구에서 개발한 ANFIS 기반 GloSea5 앙상블 기상전망 개선 기법은 전·후처리 기법을 함께 사용하는 것이 가장 좋으며, 특히 여름철과 같이 강수의 변동성이 큰 계절에 활용성이 높을 것으로 판단된다.
        5.
        2017.08 KCI 등재 서비스 종료(열람 제한)
        2014년부터 기상청에서 현업으로 활용하고 있는 전지구 계절예측시스템 GloSea5의 최대 6개월 예측 강수량을 수자원 및 여러 응용분야에 활 용하기 위해서는 예측모델이 가지는 관측자료와의 정량적인 편의를 보정할 필요가 있다. 본 연구에서는 GloSea5의 예측 강수량에서 나타나는 편 의를 보정하기 위해 확률분포형을 활용한 편의보정기법, 매개변수 및 비매개변수적 편의보정기법 등 총 11개의 기법을 활용하여 계절예측모델의 적용성을 평가하고 최적의 편의보정기법을 선정하고자 하였다. 과거재현기간에 대한 편의보정 결과, 비매개변수적 편의보정기법이 다른 기법에 비해 가장 관측자료와 유사하게 보정하는 것으로 분석되었으나 예측기간에 대해서는 상대적으로 많은 이상치를 발생시켰다. 이와는 대조적으로 매개변수적 편의보정기법은 과거재현기간 및 예측기간 모두 안정된 결과를 보여주고 있음을 확인할 수 있었다. 본 연구의 결과는 수자원운영 및 관 리, 수력, 농업 등 계절예측모델을 활용한 여러 응용분야에 적용이 가능할 것으로 기대된다.