The objective of this research was to determine the effects of harvesting frequency and fertilization levels on botanical composition, dry matter yield, and forage feed compositions of Alpine grassland at 800 m altitude. This research lasted for three years at National Alpine Agricultural Research Institute in Pyeongchang with two harvesting frequency schedules (two and three times annually) and two levels of fertilizer application (conventional level of fertilizer at 280-200-240 kg/ha and a lower level of fertilizer at 200-200-200 kg/ha for N, P2O5, and K2O). Mixture combinations with seeding rate (kg/ha) were as follows: Orchardgrass 18, Tall fescue 9, Timothy 8, Kentucky bluegrass 3, and Ladino Clover 2. The gramineae ratio ranged from 93.2 to 95.3%. Therefore, gramineae forage was considered as the dominant plant in this experiment. No significant (p>0.05) difference was observed in forage dry matter yield between the two harvesting frequency treatments (two times at 9.8 ton/ha and three times at 8.6 ton/ha). However, forage dry matter yield in the two times of harvesting frequency tended to be greater than that in the three times of harvesting frequency. Significantly (p<0.05) higher forage dry matter yield in the standard fertilization level group than the lower fertilization level group (9.8 ton/ha vs. 8.7 ton/ha) was observed. However, there was no significant (p>0.05) difference in forage crude protein concentration between the two harvesting frequency treatment groups, although the concentration in the group with three times of harvesting frequency tended to be higher. In contrast, crude fiber concentration in the group with two times of harvesting frequency tended to be higher, although the difference was not statistically significant (p>0.05). Crude protein, ether extract, crude fiber, and organic matter concentrations were not significantly (p>0.05) different between the two groups with different fertilization levels. Based on these results, it was concluded that the group with two times of harvesting frequency with conventional fertilization level might be proper for obtaining better forage productivity for Alpine grassland at 800 m altitude.
Piezoelectric energy harvesting from our surrounding vibration has been studied for driving the wireless sensor node. To change the vibration energy into the electric-energy efficiently, the natural frequency of cantilever needs to be adjusted to that of a vibration source. When adding 6.80g mass on the end of the fabricated cantilever, a natural frequency shifts from 136 Hz into 49.5 Hz. In addition, electro-mechanical coupling factor increased from 10.20% to 11.90% and resulted in the 1.18 times increase of maximum output power.