This study examined the heat balance in the electrolytic reducer during oxide reduction of pyroprocessing. The adoption of carbon anodes instead of conventional platinum anodes in the oxide reduction process has made it possible to apply high currents, and it has been observed that the temperature of the molten salt of in the reactor rises rapidly when applying high currents, so it is important to maintain an optimal operational temperature range. In this study, salt resistant heat, reaction heat, and decay heat were identified as factors affecting heat balance during the operation of oxide reduction process. Equations describing the relationships among these factors were established. Then using this, a correlation was developed to understand the relationship between applied current and the molten salt temperature in the reactor observed in the actual operation of the carbon anode electrolytic reducer of KAERI. Furthermore, this study proposed strategies to mitigate excessive temperature elevation during oxide reduction operation. A comparative assessment of these approaches was conducted. Considering KAERI electrolytic reducer operation environment, among the considered cooling strategies, the cooling effectiveness was calculated to be highest in the following order: heat transfer to extra salt, convection, conduction, argon gas bubbling.
본 연구는 중학생들이 온실 효과와 지구 온난화를 이해하고, 이를 지구 복사 평형 관점에서 설명할 수 있는지 심층적으로 살펴보고자 하였다. 이를 위해 ‘대기권과 날씨’ 대단원 수업을 완료한 중학교 3학년 118명의 학생을 대상으로, 복사 평형, 온실 효과, 지구 온난화에 대한 선택형 및 서답형으로 구성된 학생 이해 온라인 평가를 2021년 7월 13 일부터 7월 24일까지 실시하였다. 최종적으로 97명의 학생 응답을 수집하여 분석한 결과, 과반수(61.9%)가 넘는 학생들이 복사 평형의 의미를 옳게 기술하였으나 제시된 자료와 무관하게 사전 지식이나 구체적 사례를 들어 설명하는 경우가 많았다. 대부분의 학생들(92.8%)은 대기가 있는 지구에서 온실 효과가 나타나는 것을 알고 있었지만, 온실 효과를 복사 평형이 깨진 상태로 생각하는 경향이 높았으며(32.0%), 달과 지구 모두 복사 평형이 일어난다고 응답한 학생 (47.4%)은 절반에 미치지 못했다. 온실 효과의 원인으로 대기의 재복사를 찾아낸 학생은 다수(69.1%)였으나, 지구로 입사한 태양 복사량보다 방출한 지표 복사량이 더 크다고 응답한 학생은 소수(39.2%)에 불과하였다. 또한 절반 정도의 학생들(49.5%)이 온실 기체의 증가와 대기 흡수, 이로 인한 지표로의 재복사의 관계를 잘 이해하고 있었다. 그러나 온실 기체가 증가할 때, 지표 방출에 대해서는 증가(14.4%), 일정(9.3%), 감소(7.2%), 무응답(18.6%)으로 의견이 매우 다양하게 나타났다. 복사 평형, 온실 효과, 지구 온난화는 지구계의 균형과 상호작용이라는 빅 아이디어로 연결된 커다란 하나의 의미망이므로 학생들이 지구 온난화로 인한 기후 변화를 이해하고 적용하고 해석하는 개념 체계가 될 수 있다. 따라서 현재 인류에 닥친 기후 변화 위기와 관련해 학생들이 정확한 이해에 근거하여 과학적으로 사고하고 과학적 개념을 정립할 수 있도록, 정교한 프로그램 개발과 수업 경험을 제공하고 그 효과를 점검하는 후속 연구가 진행되어야 할 것이다.
여름철 고온기에 시설 이용율을 높이고 안정적인 생산을 하기 위해서는 고온 극복 시스템의 도입이 필요하며, 이러한 시스템을 도입하기 위하여는 적정 설비용량의 중요하다. 온실의 고온극복방법을 차광환기시스템, 차광환기 패드시스템, 차광환기 포그시스템으로 설정하고, 각 방법별로 시스템의 설계제원 결정을 위한 열평형식을 구성하였으며 현장 실험을 통하여 적용성을 검토하였다. 환기창 단면 풍속을 1분 간격으로 측정하여 유량으로 환산한 값을 환기량의 실측치로 하고 열평형식을 이용하여 계산한 환기량과 비교한 결과 비교적 잘 일치하는 것으로 나타났다. 열평형 모델의 입력변소중 피복재의 열관류이 1% 증가하면 필요환기량은 0.3% 감소하였고, 태양복사에 대한 증발산비(E)의 값이 1% 증가하면 필요환기량은 1.3%나 감소하는 것으로 나타났다. 따라서, E 값의 선택이 매우 중요하며 온실의 환기 및 냉방 설계기준을 설정하기 위해서는 여러 가지 작물의 상태에 따른 E값의 변화를 실측한 자료의 축적을 통해 가이드라인이 제시되어야 할 것으로 판단된다. 온실의 환기 및 냉방 설비 용량 결정을 위한 열평형 모델의 적용성을 검토하기 위하여 6가지의 동일한 조건에 대하여 시뮬레이션한 결과, 필요 공기교환율은 5.1∼7.7%정도, 증발수량은 6.8∼9.3%정도 fan and pad 시스템이 포그시스템에 비하여 큰 것으로 나타났다.
자원의 효율적 이용 및 폐기물의 자원화를 통해 천연자원의 소비를 감축하고자 환경부에서는 2018년 1월 1일부터 자원순환기본법이 시행된다. 기본원칙으로 폐기물의 발생을 최대한 억제하고 발생된 폐기물에 대해서는 재사용하고 재사용이 곤란한 경우 재생이용하고 둘 다 곤란한 경우에는 최대한 에너지를 회수⋅이용하여 열원(온수, 증기 등) 또는 전기 등의 에너지로 활용하고자한다. 이에 따라 소각시설에서 에너지 생산량에 기여하는 출열 분포의 중요성이 높아지고 있다. 따라서 본 연구에서는 사업장폐기물 소각시설을 대상으로 각각의 출열인자별 양을 산정하고 출열분포 특성에 대하여 고찰하고자 한다. 본 연구는 사업장폐기물 소각시설 7개 시설(10개 호기)를 대상으로 진행하였다. 대상시설의 출열항목은 폐열보일러의 설치형태(일체형, 분리형)에 따라 결정하였다. 소각로와 보일러가 붙은 경우를 일체형이라 하고 증기흡수열, 배출가스 보유열, 보일러 방열손실, 소각로 방열손실, 바닥재 배출열, 미연탄소분 열손실, 블로우다운 배출열의 총 7가지 출열항목을 산정하였으며, 소각로와 보일러가 분리되어 있는 경우를 분리형이라 하여 배출가스 보유열, 소각로 방열손실, 바닥재 배출열, 미연탄소분 열손실의 총 4가지 출열항목을 산정하였다. 이를 출열분포를 산정하기 위해 계측기를 이용하여 관련한 데이터를 일별로 수집하였으며, 계측이 되지 않는 항목에 대하여는 직접 측정하여 산정하였다. 출열분포 특성을 살펴본 결과 일체형 보일러를 설치한 소각시설의 경우 증기 흡수열이 출열분포가 큰 것으로 나타났으며, 분리형 보일러를 설치한 소각시설은 배출가스 보유열이 가장 많이 차지하는 것으로 나타났다.
Surface heat balance of the Gangjeong-Goryung Reservoir is analyzed for 12-17 August 2013. Each flux elements at the water surface is derived from the special field observations with application of an aerodynamical bulk method for the turbulent heat fluxes and empirical formulae for the radiation heat fluxes. The rate of heat storage in the reservoir is estimated by using estimated by surface heating rate and the vertical water temperature data. The flux divergence of heat transport is estimated as a residual. The features of the surface heat balance are almost decided by the latent heat flux and the solar radiation flux. On average for 12-17 August 2014 in the Gangjeong- Goryung Reservoir, if one defines the insolation at the water surface as 100 %, 94 % is absorbed in the reservoir; thereafter the reservoir loses about 30~50% by sensible heat, latent heat and net long-wave radiation. The residue of 50~80 % raises the water temperature in the reservoir or transported away by the river flow during the daytime.
In mid-August 2002, under clear summer pressure patterns, we carried out an intensive meteorological observation to examine the warming effects due to artificial constructions in a large housing complex. We set an automatic weather system(AWS) at two places in a bare soil surface within a limited development district and an asphalt surface within a large apartment residence area, respectively. As a result of observation, it became clear that the difference of the surface air(ground) temperature between the bare soil surface and its peripheral asphalt area reached about 4℃(13℃) at the maximum from diurnal variation of surface temperatures on AWS data.
Through the heat balance analysis using measurement data, it became clear that the thermal conditions at two places are dependent on the properties of surface material. The latent heat flux over the bare soil surface reached to about 300, which is more than a half of net radiation during the daytime. On the other hand, it was nearly zero over the asphalt surface. Hence, the sensible heat flux over the asphalt surface was far more than that of the bare soil surface. The sensible heat flux over the asphalt surface showed about 20~30 during the night. It was released from asphalt surface which have far more heat capacity than that of bare soil surface.