검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        2.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The laser power has been continually increased since the laser was developed in the mid-20th century. Achieving higher laser power requires not only enhancing the cooling performance of laser systems but also addressing the potential degradation of optical characteristics due to thermal deformation induced by laser beam absorption in a mirror. This study delves into the thermal deformation characteristics of mirrors in high-power laser systems. To minimize thermal deformation by heat absorption, Zerodur, known for its low coefficient of thermal expansion, was employed as the mirror material. Various configurations including circular, rectangular, and spline shapes were implemented on a solid mirror structure. Furthermore, two different diameter of a mirror, 300mm and 400mm, were considered to investigate the size effect of the high-power laser beams. Also, three different transmitted beam power were adopted: 50W, 250W, and 500W. Based on the finite element analysis for the thermal deformation, the deformation characteristics of the different types of mirror structures were investigated and analyzed for high-power laser systems.
        4,000원
        3.
        2023.05 구독 인증기관·개인회원 무료
        Concrete decontamination tools capable of removing the nuclear contaminated surface are necessary to minimize the amount of concrete waste generated in the process of decontamination and dismantling of nuclear power plants. Laser scabbling is a decontamination technique that removes the contaminated surface layers concrete surface by inducing internal explosion. The application principle of laser scabbling technology uses the porous nature of concrete including moisture. When high thermal energy is applied to the concrete surface, an explosion at pores is induced along with an increase in water vapor pressure. High-powered laser beam can be an effective induction source of local explosive spalling on concrete surface. In this study, the scabbling test using a 5 kW highpowered fiber laser was conducted on the concrete blocks to establish the optimal conditions for surface decontamination. It was also measured the volume peeled off the concrete surface under the conditions of two different laser head speeds. Furthermore, we tested the removal efficiency of radioactive concrete particles generated during high-power fiber laser scabbling process. A 5 kW laser beam was applied to the concrete surface at two different laser head speeds - 120 mm/min and 600 mm/min. The laser beam repeatedly moved 200 mm horizontally and 40 mm vertically within the concrete block. The amount of surface concrete removed from concrete block was calculated from the measurement of the volume and mean depth using a 3D scanner device (laser-probed Global Advantage 9.12.8(HEXAGON)) for the two different the laser head speeds. By increasing the laser head speed, less explosive spalling occurred due to shorter contact time of the laser beam with the concrete. The laser head speed of 600 mm/min reduced about 89% of the waste generated by shallow depth of scabbling as compared to the waste generated at the laser head speed of 120 mm/min. The fiber laser scabbling system was developed for surface decontamination of radioactive concrete in nuclear power plants. Tests were performed to find the optimum parameters to reduce the generation of particulate waste from the contaminated concrete surface by controlling the laser head speeds. It was confirmed that the wastes from surface decontamination was reduced up to 89% by increasing laser head speed from 120 mm/min to 600 mm/min. It was also observed that the cylindrical tube effectively vacuumed the debris generated by the explosive spalling into the collector. Removal efficiencies of concrete particles were measured greater than 99.9% with ring blower power of 650 air watt of the filter system.
        4.
        2021.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A laser scabbling experiment was performed using a high-power fiber laser to investigate the removal rate of the concrete block and the scabbled depth. Concrete specimens with a 28-day compressive strength of 30 MPa were used in this study. Initially, we conducted the scabbling experiment under a stationary laser beam condition to determine the optimum scan speed. The laser interaction time with the concrete surface varied between 3 s and 40 s. The degree of spalling and vitrification on the surface was primarily dependent on the laser interaction time and beam power. Furthermore, thermal images were captured to investigate the spatial and temporal distribution of temperature during the scabbling process. Based on the experimental results, the scan speed at which the optical head moved over the concrete was set to be 300 mm∙min−1 or 600 mm∙min−1 for the 4.8-kW or 6.8-kW laser beam, respectively. The spalling rates and average depth on the concrete blocks were measured to be 87 cm3∙min−1 or 227 cm3∙min−1 and 6.9 mm or 9.8 mm with the 4.8-kW or 6.8-kW laser beams, respectively.
        4,000원
        5.
        2009.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recently, metal molding has become essential not only for automobile parts, but also mass production, and has greatly influenced production costs as well as the quality of products. Its surface has been treated by carburizing, nitriding and induction hardening, but these existing treatments cause considerable deformation and increase the expense of postprocessing after treatment; furthermore, these treatments cannot be easily applied to parts that requiring the hardening of only a certain section. This is because the treatment cannot heat the material homogeneously, nor can it heat all of it. Laser surface treatment was developed to overcome these disadvantages, and, when the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate this, microstructural changes and hardness characteristics of three parts (the surface treatment part, heat affect zone, and parental material) are observed with the change of laser beam speed and surface temperature. Moreover, the depth of the hardened area is observed with the change of the laser beam speed and temperature.
        4,000원