The limitations and problems of the rechargeable battery and short mileage per one electric charging have not been overcome at the electric vehicles. To solve these problems, the hybrid vehicle has been developed by securing the performance of automotive with the conventional internal combustion engine and the environmental benefit. Meanwhile, the electric UTV (utility terrain vehicle) which has this environmental benefit has been widely used for factories, parks, leisure and agricultural areas. In this study, the electric UTV was fabricated and attached the auxiliary power drive systems including the photovoltaic power generation system into this electric vehicle in order to make up the hybrid (motor + photovoltaic) vehicle system. As the range of the hybrid UTV would be extended over 20% than that of the existing golf cart per one electric charging through this successful development, the dynamic stiffness was improved through light-weight body design.
We report on the successful fabrication of ZnO nanorod (NR)/polystyrene (PS) nanosphere hybrid nanostructure by combining drop coating and hydrothermal methods. Especially, by adopting an atomic layer deposition method for seed layer formation, very uniform ZnO NR structure is grown on the complicated PS surfaces. By using zinc nitrate hexahydrate [Zn(NO3)2 ·6H2O] and hexamine [(CH2)6N4] as sources for Zn and O in hydrothermal process, hexagonal shaped single crystal ZnO NRs are synthesized without dissolution of PS in hydrothermal solution. X-ray diffraction results show that the ZnO NRs are grown along c-axis with single crystalline structure and there is no trace of impurities or unintentionally formed intermetallic compounds. Photoluminescence spectrum measured at room temperature for the ZnO NRs on flat Si and PS show typical two emission bands, which are corresponding to the band-edge and deep level emissions in ZnO crystal. Based on these structural and optical investigations, we confirm that the ZnO NRs can be grown well even on the complicated PS surface morphology to form the chestnut-shaped hybrid nanostructures for the energy generation and storage applications
최근 해양시설물용 파력발전시스템은 본래 기능과 연계한 하이브리드 형태로 많은 연구개발이 이루어지고 있다. 이 중 방파제에 설계된 진동 수주형 파력발전시스템의 경우, 기존의 방파제의 기능에 더불어 터빈을 통해 파랑에너지를 전기에너지로 변환하는 발전기능을 갖는다. 이러한 형태의 발전 시스템은 해수를 손실 없이 최대한 많이 유입되도록 하는 것이 중요하다. 본 논문에서는 유입구 형상에 따른 파 력발전시스템의 출력 특성에 대해 기술하였다. 또한 일반적인 해양 구조물인 방파제에 부착된 진동수주형 웰즈터빈 모델을 시뮬레이션 하여 유입구 곡면 각도에 따라 변화하는 유입량과 해수속도 그리고 그에 따른 웰즈터빈의 출력을 측정하였다. 마지막으로 시뮬레이션 결과를 바탕 으로 하여 에너지 변환 효율을 높이기 위한 유입구 형상을 제안하였다.
A field experiment was conducted to examine the fruit quality characters in second generation (F2) hybrid cultivar and to compare the fruit characters with original F1 hybrid cultivar of minipaprika (yellow and orange type) at the Research Farm, Hwacheon in July, 2010. Fruit characters varied within F2 population of each minipaprika type. In minipaprika yellow, fruit weight varied from 12.2 g to 50.8 g (average 28.5 g) and fruit length/width varied from 1.4 to 2.8 (average, 2.0). Pericarp thickness ranged from 1.8 mm to 4.1 mm (average, 2.9 mm). Total soluble solid (TSS) varied from 6.2˚Brix to 13.5˚Brix with an average of 8.7˚Brix. Fruit volume varied from 10.3 cc to 46.7 cc with an average of 24.4 cc. In minipaprika orange type, fruit weight ranged from 19.7 g to 42.4 g (average, 29.0 g) and fruit length/width varied from 1.5 to 2.6 (average, 2.0). Pericarp thickness varied from 2.1 mm to 4.1 mm with an average of 3.0 mm. TSS varied from 5.0˚Brix to 12.2˚Brix (average, 7.9˚Brix) and average fruit volume was 24.6 cc ranging from 10.7 cc to 35.0 cc. The average fruit quality characters in F2 population in both yellow and orange minipaprika did not differ from their F1 hybrid parent and F2 seed can be an additional way to supply high yielding hybrid cultivars at lower cost to the minipaprika growers.
일반적으로 해양 시설물은 대부분 태양광 기반의 발전 시스템으로 구성된다. 태양광 발전 시스템은 날씨의 광량에 따라 변화한다. 태양광 발전 시스템은 흐린 날과 비오는 날에 전력 생산량이 감소한다. 태양광 발전량이 부족해지면 해양 시설물에 전력 부족이 발생한다. 이러한 문제를 해결하기 위하여 본 논문은 태양광과 파력 시스템을 복합한 하이브리드 발전 제어 시스템을 제안한다. 파력 발전 시스템은 웰스 터빈과 영구자석 발전기로 구성되어 있다. 제안하는 시스템을 특별한 지역에 설치하고 태양광 발전 전력과 파력 발전 전력을 측정하였다. 실험결과 태양광 전력은 파력에 비하여 안정적인 전원이다. 그러나 파력은 태양이 없는 동안에도 전력을 공급할 수 있다. 제안하는 하이브리드 시스템의 전력 특성이 태양광 시스템에 비하여 높은 안정성을 갖는 것을 알 수 있다.