Friction energy dissipative devices have been increasingly implemented as structural seismic damage protecting systems due to their excellent seismic energy dissipating capacity and high stiffness. This study develops rotational friction energy dissipative devices and verifies experimentally their cyclic response. Based on the understanding of the differences between the traditional linear-motion friction behavior and the rotational friction behavior, the configuration of the frictional surface was determined by investigating the characteristics of the micro-friction behavior. The friction surface suggested in this paper consists of brake-lining pads and stainless steel sheets and is normally stressed by high-strength bolts. Based upon these frictional characteristics of the selected interface, the rotational friction energy dissipative devices were developed. Bolt torque-bearing force tests, rotational friction tests of the suggested friction interfaces were carried out to identify their frictional behavior. Test results show that the bearing force is almost linearly proportional to the applied bolt torque and presents stable cyclic response regardless of the experimental parameters selected this testing program. Finally, cyclic tests of the rotational friction energy dissipative devices were performed to find out their structural characteristics and to confirm their stable cyclic response. The developed friction energy dissipative devices present very stable cyclic response and meet the requirements for displacement-dependent energy dissipative devices prescribed in ASCE/SEI 7-10.
기존의 철근콘크리트 부재의 이력모델은 실험에 기초한 경험식을 사용하여 주기거동시 나타나는 강성저하를 나타내는데 중점을 두므로, 에너지소산능력을 정확히 예측할 수 없다. 최근 다양한 설계변수의 영향을 고려하여 주기거동 동안 소산하는 에너지를 정확히 계산할 수 있는 설계식이 개발되었다. 본 연구에서는 이러한 설계식에 기초하여 휨지배 부재에 대한 에너지기초이력모델(Energy-Based Hysteretic Model)을 개발하였다. 제안된 모델은 완전한 주기거동을 할 경우 실제거동과 동일한 에너지를 소산하도록 고안된 선형모델로, 주곡선(Primary Curve)과 주기곡선(Cyclic Curve)을 근간으로 하고 다섯 가지 제하/재하 규칙을 적용하여 핀칭 및 강성저하를 수반하는 주기거동을 나타낸다. 본 연구에서는 다양한 실험과의 비교를 통하여 제안된 이력모델의 정확성과 유효성을 검증하였다. 제안된 이력모델은 간단하면서도 수치해석의 적용에 용이하므로, 정적 및 동적 비선형 해석/설계 프로그램의 개발에 사용할 수 있다
본 연구에서는 단자유도계 시스템에서 작성한 이력에너지 스펙트럼과 누적된 변위 연성비 스펙트럼을 이용하여 비좌굴 가새골조의 내진설계법을 제안하였다. 먼저 목표 연성비에 해당하는 이력에너지 스펙트럼과 누적된 연성비 스펙트럼을 작성하였다. 주어진 목표 변위를 만족하기 위하여 필요한 가새의 단면적은 이력에너지 요구량과 가새에 의하여 소산된 누적 소성에너지를 같다고 하여 산정하였다. 스펙트럼을 작성하고 설계절차의 유효성을 검증하기 위하여 20개의 지진기록을 이용하였다. 제안된 방법에 따라 설계된 3층과 8층 비좌굴 가새골조의 해석결과에 따르면 최상층 변위의 평균값이 성능 목표 변위에 잘 부합됨을 알 수 있다. 또한 층간변위는 구조물 높이에 따라 비교적 일정하였는데 이것은 손상 분포가 일정하기 때문에 바람직하다. 그러므로 제안된 에너지 설계법은 기존 강도설계법의 대안으로 비좌굴 가새골조의 신뢰할만한 설계법이라고 할 수 있다.
In equivalent static nonlinear analysis and in energy-based design, the structures are generally transforrned into an equivalent SDOF system. In this study the seismic energy demands in multi story structures, such as three-, eight-, and twenty-story steel moment-resisting frames (MRF), buckling restrained braced frames (BRBF) and a damage tolerant buckIing restrained braced frame (DTBRBF), are compared with those of equivalent single degree of freedom (ESDOF) systems. Sixty earthquake ground motions recorded in different soil conditions, which are soft rock, soft soil, and near fault, were used to compute the input and hysteretic energy demands in model structures. In case the modal mass coefficient is less than 0.8, the effects of higher modes are considered in the process of converting into ESDOF. According to the analysis results, the hysteretic and input energies obtained from three story and eight story MRF and DTBF agreed well with the results from analysis of equivalent SDOF systems. However in the twenty' story BRBF the results from ESDOF underestimated those obtained from the original structures