Ionic liquids (ILs) have been used in DNA extraction/separation, DNA preservation and PCR based on their characteristic affinity to DNA. However, few studies have been performed about how DNA-IL complex forms and its mechanism which would be essential to understand the role of ILs over the range of applications. Herein, we present that the differences in the structure of the DNA- IL complex are associated with the alkyl chain length of IL. The assumption was evidenced by Atomic force microscopy, DNA specific dye staining, gel-electrophoresis and real-time electrical measurement. We observed unique electrical signals with altered duration time and amplitude when DNA- ILs complexes pass through solid-state nanopore. We examined three types of ILs (EMIM-Cl, BMIM-Cl, and OMIM-Cl) for their characteristics to form DNA-ILs complexes. The results indicated that the length of hydrophobic alkyl group in respective ILs determines the form of DNA-IL complex. In conclusion, the morphology of DNA could be modified by the incorporation with different alkyl chain length of ILs, providing their further application in biosensor such as nanopore technique for DNA sequencing or understanding protein-DNA interaction.
In the previous study (Yuan et al. 2009), a quantitative trait locus (QTL) for grain weight was detected on the short arm of chromosome 5 using an advanced backcross lines (BC3F3) between Hwayeongbye (Oryza sativa) and W1944(Oryza rufipogon Griff.) .For detection of gw5 locus, a line CR6 (BC3F4) was selected and crossed to Hwayeongbyeo produce S1F2 and S1F3 population. And a plant from S1F3 population, carried W1944 homozygous segment for target region at gw5 was crossed to Hwayeong to produce S2F2 population. All these population including some S1F3 lines were grown in the field in 2007, 2008 and 2009, respectively (fig1). Frequency distribution of grain weight followed the Mendelian ratios(3:1) for single locus segregation (Χ2=1.22, 0.76, 1.34 in 2007, 2008 and 2009 respectively).In Hwayeongbye genetic background, the W1944 allele at the gw5 locusde creased grain weight, QTL analysis showed that gw5 co-segregated with RM18003 and RM194 (R2=62.7, 69.5 and 37.1% in 2007, 2008 and 2009 respectively). Addition, five QTLs plant height, culm length, secondary branch, spikelet number perplant and rationing ability were detected in the region around gw5, in 2008 and 2009. Substitution mapping with 32F3 lines, gw5 QTL was flanked by two SSRmarkers, RM18003 and RM194, in a300kb to 1.7Mb physical distance region,. QTL analysis indicated that 5 others QTLs plant height, culm length, secondary branch, spikelet number per plant and rationing ability were tightly linked.
This study was carried out to identify the quantitative trait loci (QTLs) for traits related to cold tolerance using an introgression lines (ILs) derived from a cross between a japonica weedy rice and a Tongil-type rice. Among the 80 RILs, one line (CR1835) showing tolerance for cold tolerance related to traits such as panicle exsertion and discoloration in the cold water plot was selected and backcrossed to the recurrent parent, Milyang 23. This line possessed Hapcheonaengmi 3 segments on chromosomes 1, 5 and 11. By two backcrosses to Milyang 23 and selfing, a total of 88 BC3F5 progenies were developed. The 88 ILs were evaluated for traits related to agricultural performance in cold water and in control plots. Cold tolerance was measured as difference of the culm length, spikelet fertility between two plots and panicle exsertion in cold water plot. The 88 ILs showed decreased culm length and increased anthocyan content in cold water plot than in the control water plot.