In this study, a mixed resin containing Bis-GMA was developed to produce a light-emitting sign using quantum dots. As a result of measuring the viscosity, color coordinates change, and luminance of the mixed resin, the following conclusions were obtained. The viscosity of the mixed resin decreased as the content of the diluent increased, and viscosity values ranged from 3,627 to 1,349cps showed as a result. The viscosity of the mixed resin decreased as the temperature increased, and the viscosity showed a value of 5,156 to 1,132cps. For the optical properties of InP/GaP/ZnSe/ZnS quantum dots, the absolute quantum efficiency was 91% at 522nm and 90% at 618nm when the gallium was 0.01%. The luminance of the light-emitting sign using the resin mixed with quantum dots was showed 142.6cd/m2 in white and 104.2cd/m2 in the red region.
In this study, we investigate the optical properties of InP/ZnS core/shell quantum dots (QDs) by controlling the synthesis temperature of InP. The size of InP determined by the empirical formula tends to increase with temperature: the size of InP synthesized at 140oC and 220oC is 2.46 nm and 4.52 nm, respectively. However, the photoluminescence (PL) spectrum of InP is not observed because of the formation of defects on the InP surface. The growth of InP is observed during the deposition of the shell (ZnS) on the synthesized InP, which is ended up with green-red PL spectrum. We can adjust the PL spectrum and absorption spectrum of InP/ZnS by simply adjusting the core temperature. Thus, we conclude that there exists an optimum shell thickness for the QDs according to the size.
In this study, simple chemical synthesis of green emitting Cd-free InP/ZnS QDs is accomplished by reacting In, P, Zn, and S precursors by one-pot process. The particle size and the optical properties were tailored, by controlling various experimental conditions, including [In]/[MA] (MA: myristic acid) mole ratio, reaction temperature and reaction time. The results of ultraviolet–visible spectroscopy (UV-vis), and of photoluminescence (PL), reveal that the exciton emission of InP was improved by surface coating, with a layer of ZnS. We report the correlation between each experimental condition and the luminescent properties of InP/ZnS core/shell QDs. Transmission electron microscopy (TEM), and X-ray powder diffraction (XRD) techniques were used to characterize the as-synthesized QDs. In contrast to core nanoparticles, InP/ZnS core/shell treated with surface coating shows a clear ultraviolet peak. Besides this work, we need to study what clearly determines the shell kinetic growth mechanism of InP/ZnS core shell QDs.
This study investigates the main growth mechanism of InP during InP/ZnS reaction of quantum dots (QDs). The size of the InP core, considering a synthesis time of 1-30 min, increased from the initial 2.56 nm to 3.97 nm. As a result of applying the proposed particle growth model, the migration mechanism, with time index 7, was found to be the main reaction. In addition, after the removal of unreacted In and P precursors from bath, further InP growth (of up to 4.19 nm (5%)), was observed when ZnS was added. The full width at half maximum (FWHM) of the synthesized InP/ZnS quantum dots was found to be relatively uniform, measuring about 59 nm. However, kinetic growth mechanism provides limited information for InP / ZnS core shell QDs, because the surface state of InP changes with reaction time. Further study is necessary, in order to clearly determine the kinetic growth mechanism of InP / ZnS core shell QDs.
We report a synthesis of non-toxic InP nanocrystals using non-pyrolytic precursors instead of pyrolytic and unstable tris(trimethylsilyl)phosphine, a popular precursor for synthesis of InP nanocrystals. In this study, InP nanocrystals are successfully synthesized using hexaethyl phosphorous triamide (HPT) and the synthesized InP nanocrystals showed a broad and weak photoluminescence (PL) spectrum. As synthesized InP nanocrystals are subjected to further surface modification process to enhance their stability and photoluminescence. Surface modification of InP nanocrystals is done at 230°C using 1-dodecanethiol, zinc acetate and fatty acid as sources of ZnS shell. After surface modification, the synthesized InP/ZnS nanocrystals show intense PL spectra centered at the emission wavelength 612 nm through 633 nm. The synthesized InP/ZnS core/shell structure is confirmed with X-ray diffraction (XRD) and Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). After surface modification, InP/ZnS nanocrystals having narrow particle size distribution are observed by Field Emission Transmission Electron Microscope (FE-TEM). In contrast to uncapped InP nanocrystals, InP/ZnS nanocrystals treated with a newly developed surface modified procedure show highly enhanced PL spectra with quantum yield of 47%.
연구에서는 연색 지수가 90이상의 초고연색성 백색 발광다이오드를 구현하기 위해서, 황색형광체로서 Y3Al5O12:Ce3+, 녹색형광체로서 Lu3Al5O12:Ce3+ 그리고 적색형광체로서 InP/ZnS 양자점을 적용한 형광체 변환방식의 백색 발광다이오드의 새로운 조합을 제안하였다. 또한 발광효율을 향상하기 위해서 청색 칩 위에 이증 구조의 형광 체 도포방식을 적용하였다. 적색 InP/ZnS 양자점을 적용하여 만들어진 백색 발광다이오드는 동작전류 60mA, 상관 색온도 5200K 조건하에서 발광효율이 123 lm/W 이상이며, 90 이상의 초고연색성을 나타내었다. 상업적으로 적용된 초고연색성 백색 발광다이오드 제품과 비교해 보면, 적색 InP/ZnS 양자점을 적용한 형광체 변환 방식에 의한 백색 발광다이오드 연구 결과는 고체조명 응용에 적용될 수 있을 것으로 예상된다.